1
0
mirror of https://github.com/Frooodle/Stirling-PDF.git synced 2025-01-10 00:06:51 +01:00
Stirling-PDF/scripts/split_photos.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

117 lines
4.6 KiB
Python
Raw Normal View History

2023-05-22 21:32:50 +02:00
import argparse
2023-05-01 22:57:48 +02:00
import sys
import cv2
import numpy as np
import os
def find_photo_boundaries(image, background_color, tolerance=30, min_area=10000, min_contour_area=500):
mask = cv2.inRange(image, background_color - tolerance, background_color + tolerance)
mask = cv2.bitwise_not(mask)
kernel = np.ones((5,5),np.uint8)
mask = cv2.dilate(mask, kernel, iterations=2)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
photo_boundaries = []
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
area = w * h
contour_area = cv2.contourArea(contour)
if area >= min_area and contour_area >= min_contour_area:
photo_boundaries.append((x, y, w, h))
return photo_boundaries
def estimate_background_color(image, sample_points=5):
h, w, _ = image.shape
points = [
(0, 0),
(w - 1, 0),
(w - 1, h - 1),
(0, h - 1),
(w // 2, h // 2),
]
colors = []
for x, y in points:
colors.append(image[y, x])
return np.median(colors, axis=0)
2023-05-22 21:32:50 +02:00
def auto_rotate(image, angle_threshold=1):
2023-05-01 22:57:48 +02:00
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
2023-05-22 21:32:50 +02:00
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
lines = cv2.HoughLines(edges, 1, np.pi / 180, 200)
2023-05-01 22:57:48 +02:00
2023-05-22 21:32:50 +02:00
if lines is None:
2023-05-01 22:57:48 +02:00
return image
2023-05-22 21:32:50 +02:00
# compute the median angle of the lines
angles = []
for rho, theta in lines[:, 0]:
angles.append((theta * 180) / np.pi - 90)
2024-02-11 17:47:00 +01:00
2023-05-22 21:32:50 +02:00
angle = np.median(angles)
2024-02-11 17:47:00 +01:00
2023-05-01 22:57:48 +02:00
if abs(angle) < angle_threshold:
return image
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
return cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
2023-05-22 21:32:50 +02:00
2023-05-01 22:57:48 +02:00
def crop_borders(image, border_color, tolerance=30):
mask = cv2.inRange(image, border_color - tolerance, border_color + tolerance)
2024-02-11 17:47:00 +01:00
2023-05-01 22:57:48 +02:00
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) == 0:
return image
largest_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(largest_contour)
2024-02-11 17:47:00 +01:00
2023-05-01 22:57:48 +02:00
return image[y:y+h, x:x+w]
2024-02-11 17:47:00 +01:00
2023-05-01 22:57:48 +02:00
def split_photos(input_file, output_directory, tolerance=30, min_area=10000, min_contour_area=500, angle_threshold=10, border_size=0):
image = cv2.imread(input_file)
background_color = estimate_background_color(image)
# Add a constant border around the image
image = cv2.copyMakeBorder(image, border_size, border_size, border_size, border_size, cv2.BORDER_CONSTANT, value=background_color)
photo_boundaries = find_photo_boundaries(image, background_color, tolerance)
if not os.path.exists(output_directory):
os.makedirs(output_directory)
# Get the input file's base name without the extension
input_file_basename = os.path.splitext(os.path.basename(input_file))[0]
for idx, (x, y, w, h) in enumerate(photo_boundaries):
cropped_image = image[y:y+h, x:x+w]
cropped_image = auto_rotate(cropped_image, angle_threshold)
# Remove the added border
cropped_image = cropped_image[border_size:-border_size, border_size:-border_size]
output_path = os.path.join(output_directory, f"{input_file_basename}_{idx+1}.png")
cv2.imwrite(output_path, cropped_image)
print(f"Saved {output_path}")
if __name__ == "__main__":
2023-05-22 21:32:50 +02:00
parser = argparse.ArgumentParser(description="Split photos in an image")
parser.add_argument("input_file", help="The input scanned image containing multiple photos.")
parser.add_argument("output_directory", help="The directory where the result images should be placed.")
parser.add_argument("--tolerance", type=int, default=30, help="Determines the range of color variation around the estimated background color (default: 30).")
parser.add_argument("--min_area", type=int, default=10000, help="Sets the minimum area threshold for a photo (default: 10000).")
parser.add_argument("--min_contour_area", type=int, default=500, help="Sets the minimum contour area threshold for a photo (default: 500).")
parser.add_argument("--angle_threshold", type=int, default=10, help="Sets the minimum absolute angle required for the image to be rotated (default: 10).")
parser.add_argument("--border_size", type=int, default=0, help="Sets the size of the border added and removed to prevent white borders in the output (default: 0).")
2024-02-11 17:47:00 +01:00
2023-05-22 21:32:50 +02:00
args = parser.parse_args()
split_photos(args.input_file, args.output_directory, tolerance=args.tolerance, min_area=args.min_area, min_contour_area=args.min_contour_area, angle_threshold=args.angle_threshold, border_size=args.border_size)