mirror of
				https://github.com/Frooodle/Stirling-PDF.git
				synced 2025-11-01 01:21:18 +01:00 
			
		
		
		
	# Description of Changes This pull request introduces several improvements to enhance error handling, internationalization, and documentation in the codebase. The key changes include the addition of `ExceptionUtils` and `I18nUtils` utility classes for consistent exception handling and internationalized messages, updates to documentation paths, and modifications to existing methods to integrate the new utilities. ### Error Handling Enhancements: * **Added `ExceptionUtils` utility class**: Provides standardized methods for creating and handling exceptions with internationalized error messages, including specific handling for PDF corruption, encryption issues, and other file-related errors. * **Integrated `ExceptionUtils` into `CustomPDFDocumentFactory`**: Updated `loadFromFile` and `loadFromBytes` methods to log and handle exceptions using `ExceptionUtils`, ensuring consistent error handling across PDF operations. [[1]](diffhunk://#diff-10208c1fc2e04631a8cf2a2a99b2a1160e532e75a7b840ad752f3b0130b89851R358-R363) [[2]](diffhunk://#diff-10208c1fc2e04631a8cf2a2a99b2a1160e532e75a7b840ad752f3b0130b89851R375-R381) * **Updated `FileToPdf` to use `ExceptionUtils`**: Replaced direct exception throwing with `ExceptionUtils.createHtmlFileRequiredException` for unsupported file formats. ### Internationalization Improvements: * **Added `I18nUtils` utility class**: Centralized access to Spring's `MessageSource` for retrieving localized messages, enabling consistent internationalization across the application. ### Documentation Updates: * **Updated documentation paths in `CONTRIBUTING.md` and `README.md`**: Changed paths to reference the new `devGuide` folder for developer documentation and translation guides. [[1]](diffhunk://#diff-eca12c0a30e25b4b46522ebf89465a03ba72a03f540796c979137931d8f92055L28-R28) [[2]](diffhunk://#diff-eca12c0a30e25b4b46522ebf89465a03ba72a03f540796c979137931d8f92055L40-R51) [[3]](diffhunk://#diff-b335630551682c19a781afebcf4d07bf978fb1f8ac04c6bf87428ed5106870f5L171-L174) --- ## Checklist ### General - [ ] I have read the [Contribution Guidelines](https://github.com/Stirling-Tools/Stirling-PDF/blob/main/CONTRIBUTING.md) - [ ] I have read the [Stirling-PDF Developer Guide](https://github.com/Stirling-Tools/Stirling-PDF/blob/main/DeveloperGuide.md) (if applicable) - [ ] I have read the [How to add new languages to Stirling-PDF](https://github.com/Stirling-Tools/Stirling-PDF/blob/main/HowToAddNewLanguage.md) (if applicable) - [ ] I have performed a self-review of my own code - [ ] My changes generate no new warnings ### Documentation - [ ] I have updated relevant docs on [Stirling-PDF's doc repo](https://github.com/Stirling-Tools/Stirling-Tools.github.io/blob/main/docs/) (if functionality has heavily changed) - [ ] I have read the section [Add New Translation Tags](https://github.com/Stirling-Tools/Stirling-PDF/blob/main/HowToAddNewLanguage.md#add-new-translation-tags) (for new translation tags only) ### UI Changes (if applicable) - [ ] Screenshots or videos demonstrating the UI changes are attached (e.g., as comments or direct attachments in the PR) ### Testing (if applicable) - [ ] I have tested my changes locally. Refer to the [Testing Guide](https://github.com/Stirling-Tools/Stirling-PDF/blob/main/DeveloperGuide.md#6-testing) for more details. --------- Co-authored-by: a <a>
		
			
				
	
	
		
			123 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			123 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import sys
 | 
						|
import cv2
 | 
						|
import numpy as np
 | 
						|
import os
 | 
						|
 | 
						|
def find_photo_boundaries(image, background_color, tolerance=30, min_area=10000, min_contour_area=500):
 | 
						|
    mask = cv2.inRange(image, background_color - tolerance, background_color + tolerance)
 | 
						|
    mask = cv2.bitwise_not(mask)
 | 
						|
    kernel = np.ones((5,5),np.uint8)
 | 
						|
    mask = cv2.dilate(mask, kernel, iterations=2)
 | 
						|
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
 | 
						|
    photo_boundaries = []
 | 
						|
    for contour in contours:
 | 
						|
        x, y, w, h = cv2.boundingRect(contour)
 | 
						|
        area = w * h
 | 
						|
        contour_area = cv2.contourArea(contour)
 | 
						|
        if area >= min_area and contour_area >= min_contour_area:
 | 
						|
            photo_boundaries.append((x, y, w, h))
 | 
						|
 | 
						|
    return photo_boundaries
 | 
						|
 | 
						|
def estimate_background_color(image, sample_points=5):
 | 
						|
    h, w, _ = image.shape
 | 
						|
    points = [
 | 
						|
        (0, 0),
 | 
						|
        (w - 1, 0),
 | 
						|
        (w - 1, h - 1),
 | 
						|
        (0, h - 1),
 | 
						|
        (w // 2, h // 2),
 | 
						|
    ]
 | 
						|
 | 
						|
    colors = []
 | 
						|
    for x, y in points:
 | 
						|
        colors.append(image[y, x])
 | 
						|
 | 
						|
    return np.median(colors, axis=0)
 | 
						|
 | 
						|
def auto_rotate(image, angle_threshold=1):
 | 
						|
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 | 
						|
    edges = cv2.Canny(gray, 50, 150, apertureSize=3)
 | 
						|
    lines = cv2.HoughLines(edges, 1, np.pi / 180, 200)
 | 
						|
 | 
						|
    if lines is None:
 | 
						|
        return image
 | 
						|
 | 
						|
    # compute the median angle of the lines
 | 
						|
    angles = []
 | 
						|
    for rho, theta in lines[:, 0]:
 | 
						|
        angles.append((theta * 180) / np.pi - 90)
 | 
						|
 | 
						|
    angle = np.median(angles)
 | 
						|
 | 
						|
    if abs(angle) < angle_threshold:
 | 
						|
        return image
 | 
						|
 | 
						|
    (h, w) = image.shape[:2]
 | 
						|
    center = (w // 2, h // 2)
 | 
						|
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
 | 
						|
    return cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def crop_borders(image, border_color, tolerance=30):
 | 
						|
    mask = cv2.inRange(image, border_color - tolerance, border_color + tolerance)
 | 
						|
 | 
						|
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
    if len(contours) == 0:
 | 
						|
        return image
 | 
						|
 | 
						|
    largest_contour = max(contours, key=cv2.contourArea)
 | 
						|
    x, y, w, h = cv2.boundingRect(largest_contour)
 | 
						|
 | 
						|
    return image[y:y+h, x:x+w]
 | 
						|
 | 
						|
def split_photos(input_file, output_directory, tolerance=30, min_area=10000, min_contour_area=500, angle_threshold=10, border_size=0):
 | 
						|
    image = cv2.imread(input_file)
 | 
						|
    background_color = estimate_background_color(image)
 | 
						|
 | 
						|
    # Add a constant border around the image
 | 
						|
    image = cv2.copyMakeBorder(image, border_size, border_size, border_size, border_size, cv2.BORDER_CONSTANT, value=background_color)
 | 
						|
 | 
						|
    photo_boundaries = find_photo_boundaries(image, background_color, tolerance)
 | 
						|
 | 
						|
    if not os.path.exists(output_directory):
 | 
						|
        os.makedirs(output_directory)
 | 
						|
 | 
						|
    # Get the input file's base name without the extension
 | 
						|
    input_file_basename = os.path.splitext(os.path.basename(input_file))[0]
 | 
						|
 | 
						|
    for idx, (x, y, w, h) in enumerate(photo_boundaries):
 | 
						|
        cropped_image = image[y:y+h, x:x+w]
 | 
						|
        cropped_image = auto_rotate(cropped_image, angle_threshold)
 | 
						|
 | 
						|
        # Remove the added border, but ensure we don't create an empty image
 | 
						|
        if border_size > 0 and cropped_image.shape[0] > 2 * border_size and cropped_image.shape[1] > 2 * border_size:
 | 
						|
            cropped_image = cropped_image[border_size:-border_size, border_size:-border_size]
 | 
						|
 | 
						|
        # Check if the cropped image is valid before saving
 | 
						|
        if cropped_image.size == 0 or cropped_image.shape[0] == 0 or cropped_image.shape[1] == 0:
 | 
						|
            print(f"Warning: Skipping empty image for region {idx+1}")
 | 
						|
            continue
 | 
						|
 | 
						|
        output_path = os.path.join(output_directory, f"{input_file_basename}_{idx+1}.png")
 | 
						|
        cv2.imwrite(output_path, cropped_image)
 | 
						|
        print(f"Saved {output_path}")
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(description="Split photos in an image")
 | 
						|
    parser.add_argument("input_file", help="The input scanned image containing multiple photos.")
 | 
						|
    parser.add_argument("output_directory", help="The directory where the result images should be placed.")
 | 
						|
    parser.add_argument("--tolerance", type=int, default=30, help="Determines the range of color variation around the estimated background color (default: 30).")
 | 
						|
    parser.add_argument("--min_area", type=int, default=10000, help="Sets the minimum area threshold for a photo (default: 10000).")
 | 
						|
    parser.add_argument("--min_contour_area", type=int, default=500, help="Sets the minimum contour area threshold for a photo (default: 500).")
 | 
						|
    parser.add_argument("--angle_threshold", type=int, default=10, help="Sets the minimum absolute angle required for the image to be rotated (default: 10).")
 | 
						|
    parser.add_argument("--border_size", type=int, default=0, help="Sets the size of the border added and removed to prevent white borders in the output (default: 0).")
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    split_photos(args.input_file, args.output_directory, tolerance=args.tolerance, min_area=args.min_area, min_contour_area=args.min_contour_area, angle_threshold=args.angle_threshold, border_size=args.border_size)
 |