Stirling-PDF/scripts/detect-blank-pages.py
EmadEldin Osman b7f62a635d
Optimized the code in detect-blank-pages.py
Made use of Numpy arrays
2023-12-28 04:51:50 +03:00

38 lines
1.6 KiB
Python

import cv2
import sys
import argparse
import numpy as np
def is_blank_image(image_path, threshold=10, white_percent=99, white_value=255, blur_size=5):
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
if image is None:
print(f"Error: Unable to read the image file: {image_path}")
return False
# Apply Gaussian blur to reduce noise
blurred_image = cv2.GaussianBlur(image, (blur_size, blur_size), 0)
_, thresholded_image = cv2.threshold(blurred_image, white_value - threshold, white_value, cv2.THRESH_BINARY)
# Calculate the percentage of white pixels in the thresholded image
white_pixels = np.sum(thresholded_image == white_value)
white_pixel_percentage = (white_pixels / thresholded_image.size) * 100
print(f"Page has white pixel percent of {white_pixel_percentage}")
return white_pixel_percentage >= white_percent
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Detect if an image is considered blank or not.')
parser.add_argument('image_path', help='The path to the image file.')
parser.add_argument('-t', '--threshold', type=int, default=10, help='Threshold for determining white pixels. The default value is 10.')
parser.add_argument('-w', '--white_percent', type=float, default=99, help='The percentage of white pixels for an image to be considered blank. The default value is 99.')
args = parser.parse_args()
blank = is_blank_image(args.image_path, args.threshold, args.white_percent)
# Return code 1: The image is considered blank.
# Return code 0: The image is not considered blank.
sys.exit(int(blank))