mirror of
				https://github.com/Frooodle/Stirling-PDF.git
				synced 2025-11-01 01:21:18 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			117 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import sys
 | 
						|
import cv2
 | 
						|
import numpy as np
 | 
						|
import os
 | 
						|
 | 
						|
def find_photo_boundaries(image, background_color, tolerance=30, min_area=10000, min_contour_area=500):
 | 
						|
    mask = cv2.inRange(image, background_color - tolerance, background_color + tolerance)
 | 
						|
    mask = cv2.bitwise_not(mask)
 | 
						|
    kernel = np.ones((5,5),np.uint8)
 | 
						|
    mask = cv2.dilate(mask, kernel, iterations=2)
 | 
						|
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
 | 
						|
    photo_boundaries = []
 | 
						|
    for contour in contours:
 | 
						|
        x, y, w, h = cv2.boundingRect(contour)
 | 
						|
        area = w * h
 | 
						|
        contour_area = cv2.contourArea(contour)
 | 
						|
        if area >= min_area and contour_area >= min_contour_area:
 | 
						|
            photo_boundaries.append((x, y, w, h))
 | 
						|
 | 
						|
    return photo_boundaries
 | 
						|
 | 
						|
def estimate_background_color(image, sample_points=5):
 | 
						|
    h, w, _ = image.shape
 | 
						|
    points = [
 | 
						|
        (0, 0),
 | 
						|
        (w - 1, 0),
 | 
						|
        (w - 1, h - 1),
 | 
						|
        (0, h - 1),
 | 
						|
        (w // 2, h // 2),
 | 
						|
    ]
 | 
						|
 | 
						|
    colors = []
 | 
						|
    for x, y in points:
 | 
						|
        colors.append(image[y, x])
 | 
						|
 | 
						|
    return np.median(colors, axis=0)
 | 
						|
 | 
						|
def auto_rotate(image, angle_threshold=1):
 | 
						|
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 | 
						|
    edges = cv2.Canny(gray, 50, 150, apertureSize=3)
 | 
						|
    lines = cv2.HoughLines(edges, 1, np.pi / 180, 200)
 | 
						|
 | 
						|
    if lines is None:
 | 
						|
        return image
 | 
						|
 | 
						|
    # compute the median angle of the lines
 | 
						|
    angles = []
 | 
						|
    for rho, theta in lines[:, 0]:
 | 
						|
        angles.append((theta * 180) / np.pi - 90)
 | 
						|
 | 
						|
    angle = np.median(angles)
 | 
						|
 | 
						|
    if abs(angle) < angle_threshold:
 | 
						|
        return image
 | 
						|
 | 
						|
    (h, w) = image.shape[:2]
 | 
						|
    center = (w // 2, h // 2)
 | 
						|
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
 | 
						|
    return cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def crop_borders(image, border_color, tolerance=30):
 | 
						|
    mask = cv2.inRange(image, border_color - tolerance, border_color + tolerance)
 | 
						|
 | 
						|
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
    if len(contours) == 0:
 | 
						|
        return image
 | 
						|
 | 
						|
    largest_contour = max(contours, key=cv2.contourArea)
 | 
						|
    x, y, w, h = cv2.boundingRect(largest_contour)
 | 
						|
 | 
						|
    return image[y:y+h, x:x+w]
 | 
						|
 | 
						|
def split_photos(input_file, output_directory, tolerance=30, min_area=10000, min_contour_area=500, angle_threshold=10, border_size=0):
 | 
						|
    image = cv2.imread(input_file)
 | 
						|
    background_color = estimate_background_color(image)
 | 
						|
 | 
						|
    # Add a constant border around the image
 | 
						|
    image = cv2.copyMakeBorder(image, border_size, border_size, border_size, border_size, cv2.BORDER_CONSTANT, value=background_color)
 | 
						|
 | 
						|
    photo_boundaries = find_photo_boundaries(image, background_color, tolerance)
 | 
						|
 | 
						|
    if not os.path.exists(output_directory):
 | 
						|
        os.makedirs(output_directory)
 | 
						|
 | 
						|
    # Get the input file's base name without the extension
 | 
						|
    input_file_basename = os.path.splitext(os.path.basename(input_file))[0]
 | 
						|
 | 
						|
    for idx, (x, y, w, h) in enumerate(photo_boundaries):
 | 
						|
        cropped_image = image[y:y+h, x:x+w]
 | 
						|
        cropped_image = auto_rotate(cropped_image, angle_threshold)
 | 
						|
 | 
						|
        # Remove the added border
 | 
						|
        cropped_image = cropped_image[border_size:-border_size, border_size:-border_size]
 | 
						|
 | 
						|
        output_path = os.path.join(output_directory, f"{input_file_basename}_{idx+1}.png")
 | 
						|
        cv2.imwrite(output_path, cropped_image)
 | 
						|
        print(f"Saved {output_path}")
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(description="Split photos in an image")
 | 
						|
    parser.add_argument("input_file", help="The input scanned image containing multiple photos.")
 | 
						|
    parser.add_argument("output_directory", help="The directory where the result images should be placed.")
 | 
						|
    parser.add_argument("--tolerance", type=int, default=30, help="Determines the range of color variation around the estimated background color (default: 30).")
 | 
						|
    parser.add_argument("--min_area", type=int, default=10000, help="Sets the minimum area threshold for a photo (default: 10000).")
 | 
						|
    parser.add_argument("--min_contour_area", type=int, default=500, help="Sets the minimum contour area threshold for a photo (default: 500).")
 | 
						|
    parser.add_argument("--angle_threshold", type=int, default=10, help="Sets the minimum absolute angle required for the image to be rotated (default: 10).")
 | 
						|
    parser.add_argument("--border_size", type=int, default=0, help="Sets the size of the border added and removed to prevent white borders in the output (default: 0).")
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    split_photos(args.input_file, args.output_directory, tolerance=args.tolerance, min_area=args.min_area, min_contour_area=args.min_contour_area, angle_threshold=args.angle_threshold, border_size=args.border_size)
 |