2020-02-09 14:39:24 +01:00
|
|
|
import cv2
|
|
|
|
import imutils
|
|
|
|
import numpy as np
|
2023-05-29 12:31:17 +02:00
|
|
|
|
2020-12-19 06:00:13 +01:00
|
|
|
from frigate.config import MotionConfig
|
2023-06-11 15:45:11 +02:00
|
|
|
from frigate.motion import MotionDetector
|
2020-02-09 14:39:24 +01:00
|
|
|
|
2020-11-04 13:31:25 +01:00
|
|
|
|
2023-06-11 15:45:11 +02:00
|
|
|
class FrigateMotionDetector(MotionDetector):
|
2022-04-27 16:52:45 +02:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
frame_shape,
|
|
|
|
config: MotionConfig,
|
2023-06-11 15:45:11 +02:00
|
|
|
fps: int,
|
|
|
|
improve_contrast,
|
|
|
|
threshold,
|
|
|
|
contour_area,
|
2022-04-27 16:52:45 +02:00
|
|
|
):
|
2020-12-19 06:00:13 +01:00
|
|
|
self.config = config
|
2020-10-10 17:07:14 +02:00
|
|
|
self.frame_shape = frame_shape
|
2021-02-17 14:23:32 +01:00
|
|
|
self.resize_factor = frame_shape[0] / config.frame_height
|
|
|
|
self.motion_frame_size = (
|
|
|
|
config.frame_height,
|
|
|
|
config.frame_height * frame_shape[1] // frame_shape[0],
|
|
|
|
)
|
2023-04-16 14:13:33 +02:00
|
|
|
self.avg_frame = np.zeros(self.motion_frame_size, np.float32)
|
|
|
|
self.avg_delta = np.zeros(self.motion_frame_size, np.float32)
|
2020-02-09 14:39:24 +01:00
|
|
|
self.motion_frame_count = 0
|
|
|
|
self.frame_counter = 0
|
2021-02-17 14:23:32 +01:00
|
|
|
resized_mask = cv2.resize(
|
2021-06-24 07:51:41 +02:00
|
|
|
config.mask,
|
2021-02-17 14:23:32 +01:00
|
|
|
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
|
|
|
|
interpolation=cv2.INTER_LINEAR,
|
|
|
|
)
|
|
|
|
self.mask = np.where(resized_mask == [0])
|
2021-11-07 20:16:38 +01:00
|
|
|
self.save_images = False
|
2023-06-11 15:45:11 +02:00
|
|
|
self.improve_contrast = improve_contrast
|
|
|
|
self.threshold = threshold
|
|
|
|
self.contour_area = contour_area
|
2020-02-09 14:39:24 +01:00
|
|
|
|
2023-10-14 13:46:34 +02:00
|
|
|
def is_calibrating(self):
|
|
|
|
return False
|
|
|
|
|
2020-02-09 14:39:24 +01:00
|
|
|
def detect(self, frame):
|
|
|
|
motion_boxes = []
|
|
|
|
|
2021-02-17 14:23:32 +01:00
|
|
|
gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
|
2020-10-10 17:07:14 +02:00
|
|
|
|
2020-02-09 14:39:24 +01:00
|
|
|
# resize frame
|
2021-02-17 14:23:32 +01:00
|
|
|
resized_frame = cv2.resize(
|
|
|
|
gray,
|
|
|
|
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
|
|
|
|
interpolation=cv2.INTER_LINEAR,
|
|
|
|
)
|
2020-02-09 14:39:24 +01:00
|
|
|
|
2021-11-04 17:01:12 +01:00
|
|
|
# Improve contrast
|
2022-04-16 15:52:02 +02:00
|
|
|
if self.improve_contrast.value:
|
|
|
|
minval = np.percentile(resized_frame, 4)
|
|
|
|
maxval = np.percentile(resized_frame, 96)
|
|
|
|
# don't adjust if the image is a single color
|
|
|
|
if minval < maxval:
|
|
|
|
resized_frame = np.clip(resized_frame, minval, maxval)
|
|
|
|
resized_frame = (
|
|
|
|
((resized_frame - minval) / (maxval - minval)) * 255
|
|
|
|
).astype(np.uint8)
|
2020-12-19 06:00:13 +01:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
# mask frame
|
2020-10-10 17:07:14 +02:00
|
|
|
resized_frame[self.mask] = [255]
|
2020-02-16 04:07:54 +01:00
|
|
|
|
2020-02-09 14:39:24 +01:00
|
|
|
# it takes ~30 frames to establish a baseline
|
|
|
|
# dont bother looking for motion
|
|
|
|
if self.frame_counter < 30:
|
|
|
|
self.frame_counter += 1
|
|
|
|
else:
|
2021-11-07 20:16:38 +01:00
|
|
|
if self.save_images:
|
|
|
|
self.frame_counter += 1
|
2020-02-09 14:39:24 +01:00
|
|
|
# compare to average
|
2020-10-10 17:07:14 +02:00
|
|
|
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
|
2020-02-09 14:39:24 +01:00
|
|
|
|
|
|
|
# compute the average delta over the past few frames
|
|
|
|
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
|
|
|
# register as motion, too low and a fast moving person wont be detected as motion
|
2020-12-19 06:00:13 +01:00
|
|
|
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
|
2020-02-09 14:39:24 +01:00
|
|
|
|
|
|
|
# compute the threshold image for the current frame
|
2021-02-17 14:23:32 +01:00
|
|
|
current_thresh = cv2.threshold(
|
2022-04-27 16:52:45 +02:00
|
|
|
frameDelta, self.threshold.value, 255, cv2.THRESH_BINARY
|
2021-02-17 14:23:32 +01:00
|
|
|
)[1]
|
2020-02-09 14:39:24 +01:00
|
|
|
|
|
|
|
# black out everything in the avg_delta where there isnt motion in the current frame
|
|
|
|
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
|
2020-11-27 08:38:38 +01:00
|
|
|
avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh)
|
2020-02-09 14:39:24 +01:00
|
|
|
|
|
|
|
# then look for deltas above the threshold, but only in areas where there is a delta
|
|
|
|
# in the current frame. this prevents deltas from previous frames from being included
|
2021-02-17 14:23:32 +01:00
|
|
|
thresh = cv2.threshold(
|
2022-04-27 16:52:45 +02:00
|
|
|
avg_delta_image, self.threshold.value, 255, cv2.THRESH_BINARY
|
2021-02-17 14:23:32 +01:00
|
|
|
)[1]
|
2020-02-09 14:39:24 +01:00
|
|
|
|
|
|
|
# dilate the thresholded image to fill in holes, then find contours
|
|
|
|
# on thresholded image
|
2021-11-07 20:16:38 +01:00
|
|
|
thresh_dilated = cv2.dilate(thresh, None, iterations=2)
|
|
|
|
cnts = cv2.findContours(
|
|
|
|
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
|
|
|
)
|
2020-02-09 14:39:24 +01:00
|
|
|
cnts = imutils.grab_contours(cnts)
|
|
|
|
|
|
|
|
# loop over the contours
|
|
|
|
for c in cnts:
|
|
|
|
# if the contour is big enough, count it as motion
|
|
|
|
contour_area = cv2.contourArea(c)
|
2022-04-27 16:52:45 +02:00
|
|
|
if contour_area > self.contour_area.value:
|
2020-02-09 14:39:24 +01:00
|
|
|
x, y, w, h = cv2.boundingRect(c)
|
2021-02-17 14:23:32 +01:00
|
|
|
motion_boxes.append(
|
|
|
|
(
|
|
|
|
int(x * self.resize_factor),
|
|
|
|
int(y * self.resize_factor),
|
|
|
|
int((x + w) * self.resize_factor),
|
|
|
|
int((y + h) * self.resize_factor),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
2021-11-07 20:16:38 +01:00
|
|
|
if self.save_images:
|
|
|
|
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
|
|
|
|
# print("--------")
|
|
|
|
# print(self.frame_counter)
|
|
|
|
for c in cnts:
|
|
|
|
contour_area = cv2.contourArea(c)
|
2022-04-27 16:52:45 +02:00
|
|
|
if contour_area > self.contour_area.value:
|
2021-11-07 20:16:38 +01:00
|
|
|
x, y, w, h = cv2.boundingRect(c)
|
|
|
|
cv2.rectangle(
|
|
|
|
thresh_dilated,
|
|
|
|
(x, y),
|
|
|
|
(x + w, y + h),
|
|
|
|
(0, 0, 255),
|
|
|
|
2,
|
|
|
|
)
|
2023-06-11 15:45:11 +02:00
|
|
|
|
|
|
|
cv2.imwrite(
|
|
|
|
f"debug/frames/frigate-{self.frame_counter}.jpg", thresh_dilated
|
2021-11-07 20:16:38 +01:00
|
|
|
)
|
|
|
|
|
2020-02-09 14:39:24 +01:00
|
|
|
if len(motion_boxes) > 0:
|
|
|
|
self.motion_frame_count += 1
|
|
|
|
if self.motion_frame_count >= 10:
|
2020-12-19 06:00:13 +01:00
|
|
|
# only average in the current frame if the difference persists for a bit
|
2021-02-17 14:23:32 +01:00
|
|
|
cv2.accumulateWeighted(
|
|
|
|
resized_frame, self.avg_frame, self.config.frame_alpha
|
|
|
|
)
|
2020-02-09 14:39:24 +01:00
|
|
|
else:
|
|
|
|
# when no motion, just keep averaging the frames together
|
2021-02-17 14:23:32 +01:00
|
|
|
cv2.accumulateWeighted(
|
|
|
|
resized_frame, self.avg_frame, self.config.frame_alpha
|
|
|
|
)
|
2020-02-09 14:39:24 +01:00
|
|
|
self.motion_frame_count = 0
|
|
|
|
|
2020-11-04 13:31:25 +01:00
|
|
|
return motion_boxes
|