blakeblackshear.frigate/frigate/ptz/autotrack.py

807 lines
33 KiB
Python
Raw Normal View History

"""Automatically pan, tilt, and zoom on detected objects via onvif."""
import copy
import logging
import os
import queue
import threading
import time
from functools import partial
from multiprocessing.synchronize import Event as MpEvent
import cv2
import numpy as np
from norfair.camera_motion import (
HomographyTransformationGetter,
MotionEstimator,
TranslationTransformationGetter,
)
from frigate.config import CameraConfig, FrigateConfig, ZoomingModeEnum
from frigate.const import CONFIG_DIR
from frigate.ptz.onvif import OnvifController
from frigate.types import PTZMetricsTypes
from frigate.util.builtin import update_yaml_file
from frigate.util.image import SharedMemoryFrameManager, intersection_over_union
logger = logging.getLogger(__name__)
def ptz_moving_at_frame_time(frame_time, ptz_start_time, ptz_stop_time):
# Determine if the PTZ was in motion at the set frame time
# for non ptz/autotracking cameras, this will always return False
# ptz_start_time is initialized to 0 on startup and only changes
# when autotracking movements are made
return (ptz_start_time != 0.0 and frame_time > ptz_start_time) and (
ptz_stop_time == 0.0 or (ptz_start_time <= frame_time <= ptz_stop_time)
)
class PtzMotionEstimator:
def __init__(
self, config: CameraConfig, ptz_metrics: dict[str, PTZMetricsTypes]
) -> None:
self.frame_manager = SharedMemoryFrameManager()
self.norfair_motion_estimator = None
self.camera_config = config
self.coord_transformations = None
self.ptz_metrics = ptz_metrics
self.ptz_start_time = self.ptz_metrics["ptz_start_time"]
self.ptz_stop_time = self.ptz_metrics["ptz_stop_time"]
self.ptz_metrics["ptz_reset"].set()
logger.debug(f"Motion estimator init for cam: {config.name}")
def motion_estimator(self, detections, frame_time, camera_name):
# If we've just started up or returned to our preset, reset motion estimator for new tracking session
if self.ptz_metrics["ptz_reset"].is_set():
self.ptz_metrics["ptz_reset"].clear()
# homography is nice (zooming) but slow, translation is pan/tilt only but fast.
if (
self.camera_config.onvif.autotracking.zooming
!= ZoomingModeEnum.disabled
):
logger.debug("Motion estimator reset - homography")
transformation_type = HomographyTransformationGetter()
else:
logger.debug("Motion estimator reset - translation")
transformation_type = TranslationTransformationGetter()
self.norfair_motion_estimator = MotionEstimator(
transformations_getter=transformation_type,
min_distance=30,
max_points=900,
)
self.coord_transformations = None
if ptz_moving_at_frame_time(
frame_time, self.ptz_start_time.value, self.ptz_stop_time.value
):
logger.debug(
f"Motion estimator running for {camera_name} - frame time: {frame_time}, {self.ptz_start_time.value}, {self.ptz_stop_time.value}"
)
frame_id = f"{camera_name}{frame_time}"
yuv_frame = self.frame_manager.get(
frame_id, self.camera_config.frame_shape_yuv
)
frame = cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2GRAY_I420)
# mask out detections for better motion estimation
mask = np.ones(frame.shape[:2], frame.dtype)
detection_boxes = [x[2] for x in detections]
for detection in detection_boxes:
x1, y1, x2, y2 = detection
mask[y1:y2, x1:x2] = 0
# merge camera config motion mask with detections. Norfair function needs 0,1 mask
mask = np.bitwise_and(mask, self.camera_config.motion.mask).clip(max=1)
# Norfair estimator function needs color so it can convert it right back to gray
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGRA)
try:
self.coord_transformations = self.norfair_motion_estimator.update(
frame, mask
)
logger.debug(
f"Motion estimator transformation: {self.coord_transformations.rel_to_abs([[0,0]])}"
)
except Exception:
# sometimes opencv can't find enough features in the image to find homography, so catch this error
logger.warning(
f"Autotracker: motion estimator couldn't get transformations for {camera_name} at frame time {frame_time}"
)
self.coord_transformations = None
self.frame_manager.close(frame_id)
return self.coord_transformations
class PtzAutoTrackerThread(threading.Thread):
def __init__(
self,
config: FrigateConfig,
onvif: OnvifController,
ptz_metrics: dict[str, PTZMetricsTypes],
stop_event: MpEvent,
) -> None:
threading.Thread.__init__(self)
self.name = "ptz_autotracker"
self.ptz_autotracker = PtzAutoTracker(config, onvif, ptz_metrics)
self.stop_event = stop_event
self.config = config
def run(self):
while not self.stop_event.wait(1):
for camera_name, cam in self.config.cameras.items():
if not cam.enabled:
continue
if cam.onvif.autotracking.enabled:
self.ptz_autotracker.camera_maintenance(camera_name)
else:
# disabled dynamically by mqtt
if self.ptz_autotracker.tracked_object.get(camera_name):
self.ptz_autotracker.tracked_object[camera_name] = None
self.ptz_autotracker.tracked_object_previous[camera_name] = None
logger.info("Exiting autotracker...")
class PtzAutoTracker:
def __init__(
self,
config: FrigateConfig,
onvif: OnvifController,
ptz_metrics: PTZMetricsTypes,
) -> None:
self.config = config
self.onvif = onvif
self.ptz_metrics = ptz_metrics
self.tracked_object: dict[str, object] = {}
self.tracked_object_previous: dict[str, object] = {}
self.previous_frame_time: dict[str, object] = {}
self.object_types: dict[str, object] = {}
self.required_zones: dict[str, object] = {}
self.move_queues: dict[str, object] = {}
2023-09-29 01:01:05 +02:00
self.move_queue_locks: dict[str, object] = {}
self.move_threads: dict[str, object] = {}
self.autotracker_init: dict[str, object] = {}
self.move_metrics: dict[str, object] = {}
self.calibrating: dict[str, object] = {}
self.intercept: dict[str, object] = {}
self.move_coefficients: dict[str, object] = {}
self.zoom_factor: dict[str, object] = {}
# if cam is set to autotrack, onvif should be set up
for camera_name, cam in self.config.cameras.items():
if not cam.enabled:
continue
self.autotracker_init[camera_name] = False
if cam.onvif.autotracking.enabled:
self._autotracker_setup(cam, camera_name)
def _autotracker_setup(self, cam, camera_name):
logger.debug(f"Autotracker init for cam: {camera_name}")
self.object_types[camera_name] = cam.onvif.autotracking.track
self.required_zones[camera_name] = cam.onvif.autotracking.required_zones
self.zoom_factor[camera_name] = cam.onvif.autotracking.zoom_factor
self.tracked_object[camera_name] = None
self.tracked_object_previous[camera_name] = None
self.calibrating[camera_name] = False
self.move_metrics[camera_name] = []
self.intercept[camera_name] = None
self.move_coefficients[camera_name] = []
self.move_queues[camera_name] = queue.Queue()
2023-09-29 01:01:05 +02:00
self.move_queue_locks[camera_name] = threading.Lock()
if not self.onvif.cams[camera_name]["init"]:
if not self.onvif._init_onvif(camera_name):
logger.warning(f"Unable to initialize onvif for {camera_name}")
cam.onvif.autotracking.enabled = False
self.ptz_metrics[camera_name]["ptz_autotracker_enabled"].value = False
return
if "pt-r-fov" not in self.onvif.cams[camera_name]["features"]:
cam.onvif.autotracking.enabled = False
self.ptz_metrics[camera_name]["ptz_autotracker_enabled"].value = False
logger.warning(
f"Disabling autotracking for {camera_name}: FOV relative movement not supported"
)
return
movestatus_supported = self.onvif.get_service_capabilities(camera_name)
if movestatus_supported is None or movestatus_supported.lower() != "true":
cam.onvif.autotracking.enabled = False
self.ptz_metrics[camera_name]["ptz_autotracker_enabled"].value = False
logger.warning(
f"Disabling autotracking for {camera_name}: ONVIF MoveStatus not supported"
)
return
self.onvif.get_camera_status(camera_name)
# movement thread per camera
self.move_threads[camera_name] = threading.Thread(
name=f"move_thread_{camera_name}",
target=partial(self._process_move_queue, camera_name),
)
self.move_threads[camera_name].daemon = True
self.move_threads[camera_name].start()
if cam.onvif.autotracking.movement_weights:
self.intercept[camera_name] = cam.onvif.autotracking.movement_weights[0]
self.move_coefficients[
camera_name
] = cam.onvif.autotracking.movement_weights[1:]
if cam.onvif.autotracking.calibrate_on_startup:
self._calibrate_camera(camera_name)
self.autotracker_init[camera_name] = True
def write_config(self, camera):
config_file = os.environ.get("CONFIG_FILE", f"{CONFIG_DIR}/config.yml")
logger.debug(
f"Writing new config with autotracker motion coefficients: {self.config.cameras[camera].onvif.autotracking.movement_weights}"
)
update_yaml_file(
config_file,
["cameras", camera, "onvif", "autotracking", "movement_weights"],
self.config.cameras[camera].onvif.autotracking.movement_weights,
)
def _calibrate_camera(self, camera):
# move the camera from the preset in steps and measure the time it takes to move that amount
# this will allow us to predict movement times with a simple linear regression
# start with 0 so we can determine a baseline (to be used as the intercept in the regression calc)
# TODO: take zooming into account too
num_steps = 30
step_sizes = np.linspace(0, 1, num_steps)
self.calibrating[camera] = True
logger.info(f"Camera calibration for {camera} in progress")
self.onvif._move_to_preset(
camera,
self.config.cameras[camera].onvif.autotracking.return_preset.lower(),
)
self.ptz_metrics[camera]["ptz_reset"].set()
self.ptz_metrics[camera]["ptz_stopped"].clear()
# Wait until the camera finishes moving
while not self.ptz_metrics[camera]["ptz_stopped"].is_set():
self.onvif.get_camera_status(camera)
for step in range(num_steps):
pan = step_sizes[step]
tilt = step_sizes[step]
start_time = time.time()
self.onvif._move_relative(camera, pan, tilt, 0, 1)
# Wait until the camera finishes moving
while not self.ptz_metrics[camera]["ptz_stopped"].is_set():
self.onvif.get_camera_status(camera)
stop_time = time.time()
self.move_metrics[camera].append(
{
"pan": pan,
"tilt": tilt,
"start_timestamp": start_time,
"end_timestamp": stop_time,
}
)
self.onvif._move_to_preset(
camera,
self.config.cameras[camera].onvif.autotracking.return_preset.lower(),
)
self.ptz_metrics[camera]["ptz_reset"].set()
self.ptz_metrics[camera]["ptz_stopped"].clear()
# Wait until the camera finishes moving
while not self.ptz_metrics[camera]["ptz_stopped"].is_set():
self.onvif.get_camera_status(camera)
self.calibrating[camera] = False
logger.info(f"Calibration for {camera} complete")
# calculate and save new intercept and coefficients
self._calculate_move_coefficients(camera, True)
def _calculate_move_coefficients(self, camera, calibration=False):
# calculate new coefficients when we have 50 more new values. Save up to 500
if calibration or (
len(self.move_metrics[camera]) % 50 == 0
and len(self.move_metrics[camera]) != 0
and len(self.move_metrics[camera]) <= 500
):
X = np.array(
[abs(d["pan"]) + abs(d["tilt"]) for d in self.move_metrics[camera]]
)
y = np.array(
[
d["end_timestamp"] - d["start_timestamp"]
for d in self.move_metrics[camera]
]
)
# simple linear regression with intercept
X_with_intercept = np.column_stack((np.ones(X.shape[0]), X))
self.move_coefficients[camera] = np.linalg.lstsq(
X_with_intercept, y, rcond=None
)[0]
# only assign a new intercept if we're calibrating
if calibration:
self.intercept[camera] = y[0]
# write the intercept and coefficients back to the config file as a comma separated string
movement_weights = np.concatenate(
([self.intercept[camera]], self.move_coefficients[camera])
)
self.config.cameras[camera].onvif.autotracking.movement_weights = ", ".join(
map(str, movement_weights)
)
logger.debug(
f"New regression parameters - intercept: {self.intercept[camera]}, coefficients: {self.move_coefficients[camera]}"
)
self.write_config(camera)
def _predict_movement_time(self, camera, pan, tilt):
combined_movement = abs(pan) + abs(tilt)
input_data = np.array([self.intercept[camera], combined_movement])
return np.dot(self.move_coefficients[camera], input_data)
def _process_move_queue(self, camera):
while True:
2023-09-29 01:01:05 +02:00
move_data = self.move_queues[camera].get()
with self.move_queue_locks[camera]:
frame_time, pan, tilt, zoom = move_data
# if we're receiving move requests during a PTZ move, ignore them
if ptz_moving_at_frame_time(
frame_time,
self.ptz_metrics[camera]["ptz_start_time"].value,
self.ptz_metrics[camera]["ptz_stop_time"].value,
):
# instead of dequeueing this might be a good place to preemptively move based
# on an estimate - for fast moving objects, etc.
logger.debug(
f"Move queue: PTZ moving, dequeueing move request - frame time: {frame_time}, final pan: {pan}, final tilt: {tilt}, final zoom: {zoom}"
)
continue
else:
if (
self.config.cameras[camera].onvif.autotracking.zooming
== ZoomingModeEnum.relative
):
self.onvif._move_relative(camera, pan, tilt, zoom, 1)
else:
if zoom > 0:
self.onvif._zoom_absolute(camera, zoom, 1)
else:
self.onvif._move_relative(camera, pan, tilt, 0, 1)
# Wait until the camera finishes moving
while not self.ptz_metrics[camera]["ptz_stopped"].is_set():
# check if ptz is moving
self.onvif.get_camera_status(camera)
if self.config.cameras[camera].onvif.autotracking.movement_weights:
logger.debug(
f"Predicted movement time: {self._predict_movement_time(camera, pan, tilt)}"
)
logger.debug(
f'Actual movement time: {self.ptz_metrics[camera]["ptz_stop_time"].value-self.ptz_metrics[camera]["ptz_start_time"].value}'
)
# save metrics for better estimate calculations
if (
self.intercept[camera] is not None
and len(self.move_metrics[camera]) < 500
):
logger.debug("Adding new values to move metrics")
self.move_metrics[camera].append(
{
"pan": pan,
"tilt": tilt,
"start_timestamp": self.ptz_metrics[camera][
"ptz_start_time"
].value,
"end_timestamp": self.ptz_metrics[camera][
"ptz_stop_time"
].value,
}
)
# calculate new coefficients if we have enough data
self._calculate_move_coefficients(camera)
def _enqueue_move(self, camera, frame_time, pan, tilt, zoom):
def split_value(value):
clipped = np.clip(value, -1, 1)
return clipped, value - clipped
if (
frame_time > self.ptz_metrics[camera]["ptz_start_time"].value
and frame_time > self.ptz_metrics[camera]["ptz_stop_time"].value
2023-09-29 01:01:05 +02:00
and not self.move_queue_locks[camera].locked()
):
# don't make small movements
if abs(pan) < 0.02:
pan = 0
if abs(tilt) < 0.02:
tilt = 0
# split up any large moves caused by velocity estimated movements
while pan != 0 or tilt != 0 or zoom != 0:
pan, pan_excess = split_value(pan)
tilt, tilt_excess = split_value(tilt)
zoom, zoom_excess = split_value(zoom)
logger.debug(
f"Enqueue movement for frame time: {frame_time} pan: {pan}, enqueue tilt: {tilt}, enqueue zoom: {zoom}"
)
move_data = (frame_time, pan, tilt, zoom)
self.move_queues[camera].put(move_data)
pan = pan_excess
tilt = tilt_excess
zoom = zoom_excess
def _should_zoom_in(self, camera, box, area, average_velocity):
camera_config = self.config.cameras[camera]
camera_width = camera_config.frame_shape[1]
camera_height = camera_config.frame_shape[0]
camera_area = camera_width * camera_height
bb_left, bb_top, bb_right, bb_bottom = box
# If bounding box is not within 5% of an edge
# If object area is less than 70% of frame
# Then zoom in, otherwise try zooming out
# should we make these configurable?
#
# TODO: Take into account the area changing when an object is moving out of frame
edge_threshold = 0.15
area_threshold = self.zoom_factor[camera]
velocity_threshold = 0.1
# if we have a fast moving object, let's zoom out
# fast moving is defined as a velocity of more than 10% of the camera's width or height
# so an object with an x velocity of 15 pixels on a 1280x720 camera would trigger a zoom out
velocity_threshold = average_velocity[0] > (
camera_width * velocity_threshold
) or average_velocity[1] > (camera_height * velocity_threshold)
# returns True to zoom in, False to zoom out
return (
bb_left > edge_threshold * camera_width
and bb_right < (1 - edge_threshold) * camera_width
and bb_top > edge_threshold * camera_height
and bb_bottom < (1 - edge_threshold) * camera_height
and area < area_threshold * camera_area
and not velocity_threshold
)
def _autotrack_move_ptz(self, camera, obj):
camera_config = self.config.cameras[camera]
average_velocity = (0,) * 4
# # frame width and height
camera_width = camera_config.frame_shape[1]
camera_height = camera_config.frame_shape[0]
camera_fps = camera_config.detect.fps
centroid_x = obj.obj_data["centroid"][0]
centroid_y = obj.obj_data["centroid"][1]
# Normalize coordinates. top right of the fov is (1,1), center is (0,0), bottom left is (-1, -1).
pan = ((centroid_x / camera_width) - 0.5) * 2
tilt = (0.5 - (centroid_y / camera_height)) * 2
if (
camera_config.onvif.autotracking.movement_weights
): # use estimates if we have available coefficients
predicted_movement_time = self._predict_movement_time(camera, pan, tilt)
# Norfair gives us two points for the velocity of an object represented as x1, y1, x2, y2
x1, y1, x2, y2 = obj.obj_data["estimate_velocity"]
average_velocity = (
(x1 + x2) / 2,
(y1 + y2) / 2,
(x1 + x2) / 2,
(y1 + y2) / 2,
)
# get euclidean distance of the two points, sometimes the estimate is way off
distance = np.linalg.norm([x2 - x1, y2 - y1])
if distance <= 5:
# this box could exceed the frame boundaries if velocity is high
# but we'll handle that in _enqueue_move() as two separate moves
predicted_box = [
round(x + camera_fps * predicted_movement_time * v)
for x, v in zip(obj.obj_data["box"], average_velocity)
]
else:
# estimate was bad
predicted_box = obj.obj_data["box"]
centroid_x = round((predicted_box[0] + predicted_box[2]) / 2)
centroid_y = round((predicted_box[1] + predicted_box[3]) / 2)
# recalculate pan and tilt with new centroid
pan = ((centroid_x / camera_width) - 0.5) * 2
tilt = (0.5 - (centroid_y / camera_height)) * 2
logger.debug(f'Original box: {obj.obj_data["box"]}')
logger.debug(f"Predicted box: {predicted_box}")
logger.debug(f'Velocity: {obj.obj_data["estimate_velocity"]}')
if camera_config.onvif.autotracking.zooming == ZoomingModeEnum.relative:
# relative zooming concurrently with pan/tilt
zoom = min(
obj.obj_data["area"]
/ (camera_width * camera_height)
* 100
* self.zoom_factor[camera],
1,
)
logger.debug(f"Zoom value: {zoom}")
# test if we need to zoom out
if not self._should_zoom_in(
camera,
predicted_box
if camera_config.onvif.autotracking.movement_weights
else obj.obj_data["box"],
obj.obj_data["area"],
average_velocity,
):
zoom = -(1 - zoom)
# don't make small movements to zoom in if area hasn't changed significantly
# but always zoom out if necessary
if (
"area" in obj.previous
and abs(obj.obj_data["area"] - obj.previous["area"])
/ obj.obj_data["area"]
< 0.2
and zoom > 0
):
zoom = 0
else:
zoom = 0
self._enqueue_move(camera, obj.obj_data["frame_time"], pan, tilt, zoom)
def _autotrack_zoom_only(self, camera, obj):
camera_config = self.config.cameras[camera]
# absolute zooming separately from pan/tilt
if camera_config.onvif.autotracking.zooming == ZoomingModeEnum.absolute:
zoom_level = self.ptz_metrics[camera]["ptz_zoom_level"].value
if 0 < zoom_level <= 1:
if self._should_zoom_in(
camera, obj.obj_data["box"], obj.obj_data["area"], (0, 0, 0, 0)
):
zoom = min(1.0, zoom_level + 0.1)
else:
zoom = max(0.0, zoom_level - 0.1)
if zoom != zoom_level:
self._enqueue_move(camera, obj.obj_data["frame_time"], 0, 0, zoom)
def autotrack_object(self, camera, obj):
camera_config = self.config.cameras[camera]
if camera_config.onvif.autotracking.enabled:
if not self.autotracker_init[camera]:
self._autotracker_setup(self.config.cameras[camera], camera)
if self.calibrating[camera]:
logger.debug("Calibrating camera")
return
# either this is a brand new object that's on our camera, has our label, entered the zone, is not a false positive,
# and is not initially motionless - or one we're already tracking, which assumes all those things are already true
if (
# new object
self.tracked_object[camera] is None
and obj.camera == camera
and obj.obj_data["label"] in self.object_types[camera]
and set(obj.entered_zones) & set(self.required_zones[camera])
and not obj.previous["false_positive"]
and not obj.false_positive
and self.tracked_object_previous[camera] is None
and obj.obj_data["motionless_count"] == 0
):
logger.debug(
f"Autotrack: New object: {obj.obj_data['id']} {obj.obj_data['box']} {obj.obj_data['frame_time']}"
)
self.tracked_object[camera] = obj
self.tracked_object_previous[camera] = copy.deepcopy(obj)
self.previous_frame_time[camera] = obj.obj_data["frame_time"]
self._autotrack_move_ptz(camera, obj)
return
if (
# already tracking an object
self.tracked_object[camera] is not None
and self.tracked_object_previous[camera] is not None
and obj.obj_data["id"] == self.tracked_object[camera].obj_data["id"]
and obj.obj_data["frame_time"] != self.previous_frame_time
):
self.previous_frame_time[camera] = obj.obj_data["frame_time"]
# Don't move ptz if Euclidean distance from object to center of frame is
# less than 15% of the of the larger dimension (width or height) of the frame,
# multiplied by a scaling factor for object size.
# Adjusting this percentage slightly lower will effectively cause the camera to move
# more often to keep the object in the center. Raising the percentage will cause less
# movement and will be more flexible with objects not quite being centered.
# TODO: there's probably a better way to approach this
distance = np.linalg.norm(
[
obj.obj_data["centroid"][0] - camera_config.detect.width / 2,
obj.obj_data["centroid"][1] - camera_config.detect.height / 2,
]
)
obj_width = obj.obj_data["box"][2] - obj.obj_data["box"][0]
obj_height = obj.obj_data["box"][3] - obj.obj_data["box"][1]
max_obj = max(obj_width, obj_height)
max_frame = max(camera_config.detect.width, camera_config.detect.height)
# larger objects should lower the threshold, smaller objects should raise it
scaling_factor = 1 - (max_obj / max_frame)
distance_threshold = 0.15 * (max_frame) * scaling_factor
iou = intersection_over_union(
self.tracked_object_previous[camera].obj_data["box"],
obj.obj_data["box"],
)
logger.debug(
f"Distance: {distance}, threshold: {distance_threshold}, iou: {iou}"
)
if distance < distance_threshold and iou > 0.2:
logger.debug(
f"Autotrack: Existing object (do NOT move ptz): {obj.obj_data['id']} {obj.obj_data['box']} {obj.obj_data['frame_time']}"
)
# no need to move, but try absolute zooming
self._autotrack_zoom_only(camera, obj)
return
logger.debug(
f"Autotrack: Existing object (need to move ptz): {obj.obj_data['id']} {obj.obj_data['box']} {obj.obj_data['frame_time']}"
)
self.tracked_object_previous[camera] = copy.deepcopy(obj)
self._autotrack_move_ptz(camera, obj)
# try absolute zooming too
self._autotrack_zoom_only(camera, obj)
return
if (
# The tracker lost an object, so let's check the previous object's region and compare it with the incoming object
# If it's within bounds, start tracking that object.
# Should we check region (maybe too broad) or expand the previous object's box a bit and check that?
self.tracked_object[camera] is None
and obj.camera == camera
and obj.obj_data["label"] in self.object_types[camera]
and not obj.previous["false_positive"]
and not obj.false_positive
and self.tracked_object_previous[camera] is not None
):
self.previous_frame_time[camera] = obj.obj_data["frame_time"]
if (
intersection_over_union(
self.tracked_object_previous[camera].obj_data["region"],
obj.obj_data["box"],
)
< 0.2
):
logger.debug(
f"Autotrack: Reacquired object: {obj.obj_data['id']} {obj.obj_data['box']} {obj.obj_data['frame_time']}"
)
self.tracked_object[camera] = obj
self.tracked_object_previous[camera] = copy.deepcopy(obj)
self._autotrack_move_ptz(camera, obj)
return
def end_object(self, camera, obj):
if self.config.cameras[camera].onvif.autotracking.enabled:
if (
self.tracked_object[camera] is not None
and obj.obj_data["id"] == self.tracked_object[camera].obj_data["id"]
):
logger.debug(
f"Autotrack: End object: {obj.obj_data['id']} {obj.obj_data['box']}"
)
self.tracked_object[camera] = None
def camera_maintenance(self, camera):
# bail and don't check anything if we're calibrating or tracking an object
if self.calibrating[camera] or self.tracked_object[camera] is not None:
return
logger.debug("Running camera maintenance")
# calls get_camera_status to check/update ptz movement
# returns camera to preset after timeout when tracking is over
autotracker_config = self.config.cameras[camera].onvif.autotracking
if not self.autotracker_init[camera]:
self._autotracker_setup(self.config.cameras[camera], camera)
# regularly update camera status
if not self.ptz_metrics[camera]["ptz_stopped"].is_set():
self.onvif.get_camera_status(camera)
# return to preset if tracking is over
if (
self.tracked_object[camera] is None
and self.tracked_object_previous[camera] is not None
and (
# might want to use a different timestamp here?
self.ptz_metrics[camera]["ptz_frame_time"].value
- self.tracked_object_previous[camera].obj_data["frame_time"]
> autotracker_config.timeout
)
and autotracker_config.return_preset
):
# empty move queue
while not self.move_queues[camera].empty():
self.move_queues[camera].get()
# clear tracked object
self.tracked_object[camera] = None
self.tracked_object_previous[camera] = None
self.ptz_metrics[camera]["ptz_stopped"].wait()
logger.debug(
f"Autotrack: Time is {self.ptz_metrics[camera]['ptz_frame_time'].value}, returning to preset: {autotracker_config.return_preset}"
)
self.onvif._move_to_preset(
camera,
autotracker_config.return_preset.lower(),
)
self.ptz_metrics[camera]["ptz_reset"].set()