blakeblackshear.frigate/benchmark.py

88 lines
2.7 KiB
Python
Raw Normal View History

import os
from statistics import mean
import multiprocessing as mp
2019-06-05 04:38:41 +02:00
import numpy as np
import datetime
from frigate.edgetpu import LocalObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
2019-06-05 04:38:41 +02:00
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
labels = load_labels('/labelmap.txt')
2019-06-05 04:38:41 +02:00
######
# Minimal same process runner
######
# object_detector = LocalObjectDetector()
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
2019-06-05 04:38:41 +02:00
# start = datetime.datetime.now().timestamp()
2019-06-05 04:38:41 +02:00
# frame_times = []
# for x in range(0, 1000):
# start_frame = datetime.datetime.now().timestamp()
2019-06-05 04:38:41 +02:00
# tensor_input[:] = my_frame
# detections = object_detector.detect_raw(tensor_input)
# parsed_detections = []
# for d in detections:
# if d[1] < 0.4:
# break
# parsed_detections.append((
# labels[int(d[0])],
# float(d[1]),
# (d[2], d[3], d[4], d[5])
# ))
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
# duration = datetime.datetime.now().timestamp()-start
# print(f"Processed for {duration:.2f} seconds.")
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
######
# Separate process runner
######
def start(id, num_detections, detection_queue, event):
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue, event)
start = datetime.datetime.now().timestamp()
frame_times = []
for x in range(0, num_detections):
start_frame = datetime.datetime.now().timestamp()
detections = object_detector.detect(my_frame)
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
duration = datetime.datetime.now().timestamp()-start
print(f"{id} - Processed for {duration:.2f} seconds.")
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
event = mp.Event()
edgetpu_process = EdgeTPUProcess({'1': event})
start(1, 1000, edgetpu_process.detection_queue, event)
print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms")
####
# Multiple camera processes
####
# camera_processes = []
# pipes = {}
# for x in range(0, 10):
# pipes[x] = mp.Pipe(duplex=False)
# edgetpu_process = EdgeTPUProcess({str(key): value[1] for (key, value) in pipes.items()})
# for x in range(0, 10):
# camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue, pipes[x][0]))
# camera_process.daemon = True
# camera_processes.append(camera_process)
# start = datetime.datetime.now().timestamp()
# for p in camera_processes:
# p.start()
# for p in camera_processes:
# p.join()
# duration = datetime.datetime.now().timestamp()-start
# print(f"Total - Processed for {duration:.2f} seconds.")