blakeblackshear.frigate/frigate/ptz_autotrack.py

289 lines
12 KiB
Python
Raw Normal View History

2023-06-25 01:16:22 +02:00
"""Automatically pan, tilt, and zoom on detected objects via onvif."""
import logging
import threading
import time
from multiprocessing.synchronize import Event as MpEvent
import cv2
import numpy as np
from norfair.camera_motion import MotionEstimator, TranslationTransformationGetter
from frigate.config import CameraConfig, FrigateConfig
from frigate.ptz import OnvifController
from frigate.types import CameraMetricsTypes
from frigate.util import SharedMemoryFrameManager, intersection_over_union
logger = logging.getLogger(__name__)
2023-06-29 18:05:14 +02:00
class PtzMotionEstimatorThread(threading.Thread):
def __init__(self, config: CameraConfig, ptz_moving, stop_event) -> None:
threading.Thread.__init__(self)
self.name = "frigate_ptz_motion_estimator"
self.ptz_moving = ptz_moving
self.config = config
self.stop_event = stop_event
self.ptz_motion_estimator = PtzMotionEstimator(self.config, self.ptz_moving)
def run(self):
while not self.stop_event.is_set():
pass
logger.info("Exiting motion estimator...")
2023-06-25 01:16:22 +02:00
class PtzMotionEstimator:
def __init__(self, config: CameraConfig, ptz_moving) -> None:
self.frame_manager = SharedMemoryFrameManager()
# homography is nice (zooming) but slow, translation is pan/tilt only but fast.
self.norfair_motion_estimator = MotionEstimator(
transformations_getter=TranslationTransformationGetter()
)
self.camera_config = config
self.coord_transformations = None
self.ptz_moving = ptz_moving
logger.debug(f"Motion estimator init for cam: {config.name}")
def motion_estimator(self, detections, frame_time, camera_name):
if self.camera_config.onvif.autotracking.enabled and self.ptz_moving.value:
logger.debug(f"Motion estimator running for {camera_name}")
frame_id = f"{camera_name}{frame_time}"
frame = self.frame_manager.get(frame_id, self.camera_config.frame_shape)
# mask out detections for better motion estimation
mask = np.ones(frame.shape[:2], frame.dtype)
detection_boxes = [x[2] for x in detections]
for detection in detection_boxes:
x1, y1, x2, y2 = detection
mask[y1:y2, x1:x2] = 0
# merge camera config motion mask with detections. Norfair function needs 0,1 mask
mask = np.bitwise_and(mask, self.camera_config.motion.mask).clip(max=1)
# Norfair estimator function needs color
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGRA)
self.coord_transformations = self.norfair_motion_estimator.update(
frame, mask
)
self.frame_manager.close(frame_id)
2023-06-29 18:05:14 +02:00
logger.debug(
f"frame time: {frame_time}, coord_transformations: {vars(self.coord_transformations)}"
)
2023-06-25 01:16:22 +02:00
return self.coord_transformations
return None
class PtzAutoTrackerThread(threading.Thread):
def __init__(
self,
config: FrigateConfig,
onvif: OnvifController,
camera_metrics: CameraMetricsTypes,
stop_event: MpEvent,
) -> None:
threading.Thread.__init__(self)
self.name = "frigate_ptz_autotracker"
self.ptz_autotracker = PtzAutoTracker(config, onvif, camera_metrics)
self.stop_event = stop_event
self.config = config
def run(self):
while not self.stop_event.is_set():
for camera_name, cam in self.config.cameras.items():
if cam.onvif.autotracking.enabled:
self.ptz_autotracker.camera_maintenance(camera_name)
time.sleep(1)
logger.info("Exiting autotracker...")
class PtzAutoTracker:
def __init__(
self,
config: FrigateConfig,
onvif: OnvifController,
camera_metrics: CameraMetricsTypes,
) -> None:
self.config = config
self.onvif = onvif
self.camera_metrics = camera_metrics
self.tracked_object: dict[str, object] = {}
self.tracked_object_previous: dict[str, object] = {}
self.object_types = {}
self.required_zones = {}
# if cam is set to autotrack, onvif should be set up
for camera_name, cam in self.config.cameras.items():
if cam.onvif.autotracking.enabled:
logger.debug(f"Autotracker init for cam: {camera_name}")
self.object_types[camera_name] = cam.onvif.autotracking.track
self.required_zones[camera_name] = cam.onvif.autotracking.required_zones
self.tracked_object[camera_name] = None
self.tracked_object_previous[camera_name] = None
if not onvif.cams[camera_name]["init"]:
if not self.onvif._init_onvif(camera_name):
return
if not onvif.cams[camera_name]["relative_fov_supported"]:
cam.onvif.autotracking.enabled = False
self.camera_metrics[camera_name][
"ptz_autotracker_enabled"
].value = False
logger.warning(
f"Disabling autotracking for {camera_name}: FOV relative movement not supported"
)
def _autotrack_move_ptz(self, camera, obj):
camera_config = self.config.cameras[camera]
# # frame width and height
camera_width = camera_config.frame_shape[1]
camera_height = camera_config.frame_shape[0]
# Normalize coordinates. top right of the fov is (1,1).
pan = 0.5 - (obj.obj_data["centroid"][0] / camera_width)
tilt = 0.5 - (obj.obj_data["centroid"][1] / camera_height)
# Calculate zoom amount
size_ratio = camera_config.onvif.autotracking.size_ratio
int(size_ratio * camera_width)
int(size_ratio * camera_height)
# ideas: check object velocity for camera speed?
self.onvif._move_relative(camera, -pan, tilt, 1)
def autotrack_object(self, camera, obj):
camera_config = self.config.cameras[camera]
# check if ptz is moving
self.onvif.get_camera_status(camera)
if camera_config.onvif.autotracking.enabled:
# either this is a brand new object that's on our camera, has our label, entered the zone, is not a false positive, and is not initially motionless
# or one we're already tracking, which assumes all those things are already true
if (
# new object
self.tracked_object[camera] is None
and obj.camera == camera
and obj.obj_data["label"] in self.object_types[camera]
and set(obj.entered_zones) & set(self.required_zones[camera])
and not obj.previous["false_positive"]
and not obj.false_positive
and self.tracked_object_previous[camera] is None
):
logger.debug(f"Autotrack: New object: {obj.to_dict()}")
self.tracked_object[camera] = obj
self.tracked_object_previous[camera] = obj
self._autotrack_move_ptz(camera, obj)
return
if (
# already tracking an object
self.tracked_object[camera] is not None
and self.tracked_object_previous[camera] is not None
and obj.obj_data["id"] == self.tracked_object[camera].obj_data["id"]
and obj.obj_data["frame_time"]
!= self.tracked_object_previous[camera].obj_data["frame_time"]
):
# don't move the ptz if we're relatively close to the existing box
# should we use iou or euclidean distance or both?
# distance = math.sqrt((obj.obj_data["centroid"][0] - camera_width/2)**2 + (obj.obj_data["centroid"][1] - obj.camera_height/2)**2)
# if distance <= (self.camera_width * .15) or distance <= (self.camera_height * .15)
if (
intersection_over_union(
self.tracked_object_previous[camera].obj_data["box"],
obj.obj_data["box"],
)
< 0.05
):
logger.debug(
f"Autotrack: Existing object (do NOT move ptz): {obj.to_dict()}"
)
return
logger.debug(f"Autotrack: Existing object (move ptz): {obj.to_dict()}")
self.tracked_object_previous[camera] = obj
self._autotrack_move_ptz(camera, obj)
return
if (
# The tracker lost an object, so let's check the previous object's region and compare it with the incoming object
# If it's within bounds, start tracking that object.
# Should we check region (maybe too broad) or expand the previous object's box a bit and check that?
self.tracked_object[camera] is None
and obj.camera == camera
and obj.obj_data["label"] in self.object_types[camera]
and not obj.previous["false_positive"]
and not obj.false_positive
and obj.obj_data["motionless_count"] == 0
and self.tracked_object_previous[camera] is not None
):
if (
intersection_over_union(
self.tracked_object_previous[camera].obj_data["region"],
obj.obj_data["box"],
)
< 0.2
):
logger.debug(f"Autotrack: Reacquired object: {obj.to_dict()}")
self.tracked_object[camera] = obj
self.tracked_object_previous[camera] = obj
self._autotrack_move_ptz(camera, obj)
return
def end_object(self, camera, obj):
if self.config.cameras[camera].onvif.autotracking.enabled:
if (
self.tracked_object[camera] is not None
and obj.obj_data["id"] == self.tracked_object[camera].obj_data["id"]
):
logger.debug(f"Autotrack: End object: {obj.to_dict()}")
self.tracked_object[camera] = None
self.onvif.get_camera_status(camera)
def camera_maintenance(self, camera):
# calls get_camera_status to check/update ptz movement
# returns camera to preset after timeout when tracking is over
autotracker_config = self.config.cameras[camera].onvif.autotracking
if autotracker_config.enabled:
# regularly update camera status
if self.camera_metrics[camera]["ptz_moving"].value:
self.onvif.get_camera_status(camera)
# return to preset if tracking is over
if (
self.tracked_object[camera] is None
and self.tracked_object_previous[camera] is not None
and (
# might want to use a different timestamp here?
time.time() - self.tracked_object_previous[camera].last_published
> autotracker_config.timeout
)
and autotracker_config.return_preset
and not self.camera_metrics[camera]["ptz_moving"].value
):
logger.debug(
f"Autotrack: Time is {time.time()}, returning to preset: {autotracker_config.return_preset}"
)
self.onvif._move_to_preset(
camera,
autotracker_config.return_preset.lower(),
)
self.tracked_object_previous[camera] = None
def disable_autotracking(self, camera):
# need to call this if autotracking is disabled by mqtt??
self.tracked_object[camera] = None