blakeblackshear.frigate/frigate/objects.py

180 lines
7.8 KiB
Python
Raw Normal View History

2019-02-26 03:27:02 +01:00
import time
import datetime
import threading
import cv2
import prctl
import numpy as np
2019-12-23 13:40:48 +01:00
from . util import draw_box_with_label, LABELS
2019-02-26 03:27:02 +01:00
class ObjectCleaner(threading.Thread):
2019-03-27 12:17:00 +01:00
def __init__(self, objects_parsed, detected_objects):
2019-02-26 03:27:02 +01:00
threading.Thread.__init__(self)
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
def run(self):
prctl.set_name("ObjectCleaner")
2019-02-26 03:27:02 +01:00
while True:
2019-03-27 12:17:00 +01:00
# wait a bit before checking for expired frames
time.sleep(0.2)
# expire the objects that are more than 1 second old
now = datetime.datetime.now().timestamp()
# look for the first object found within the last second
# (newest objects are appended to the end)
detected_objects = self._detected_objects.copy()
num_to_delete = 0
for obj in detected_objects:
if now-obj['frame_time']<2:
break
num_to_delete += 1
if num_to_delete > 0:
del self._detected_objects[:num_to_delete]
# notify that parsed objects were changed
with self._objects_parsed:
self._objects_parsed.notify_all()
2019-12-23 13:40:48 +01:00
class DetectedObjectsProcessor(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame = self.camera.detected_objects_queue.get()
objects = frame['detected_objects']
if len(objects) == 0:
return
for raw_obj in objects:
obj = {
'score': float(raw_obj.score),
'box': raw_obj.bounding_box.flatten().tolist(),
'name': str(LABELS[raw_obj.label_id]),
'frame_time': frame['frame_time'],
'region_id': frame['region_id']
}
# find the matching region
region = self.camera.regions[frame['region_id']]
# Compute some extra properties
obj.update({
'xmin': int((obj['box'][0] * frame['size']) + frame['x_offset']),
'ymin': int((obj['box'][1] * frame['size']) + frame['y_offset']),
'xmax': int((obj['box'][2] * frame['size']) + frame['x_offset']),
'ymax': int((obj['box'][3] * frame['size']) + frame['y_offset'])
})
# Compute the area
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
object_name = obj['name']
if object_name in region['objects']:
obj_settings = region['objects'][object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
continue
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', region['size']**2) < obj['area']:
continue
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
continue
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj['ymax']), len(self.mask)-1)
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if self.camera.mask[y_location][x_location] == [0]:
continue
# look to see if the bounding box is too close to the region border and the region border is not the edge of the frame
# if ((frame['x_offset'] > 0 and obj['box'][0] < 0.01) or
# (frame['y_offset'] > 0 and obj['box'][1] < 0.01) or
# (frame['x_offset']+frame['size'] < self.frame_shape[1] and obj['box'][2] > 0.99) or
# (frame['y_offset']+frame['size'] < self.frame_shape[0] and obj['box'][3] > 0.99)):
# size, x_offset, y_offset = calculate_region(self.frame_shape, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
# This triggers WAY too often with stationary objects on the edge of a region.
# Every frame triggers it and fills the queue...
# I need to create a new region and add it to the list of regions, but
# it needs to check for a duplicate region first.
# self.resize_queue.put({
# 'camera_name': self.name,
# 'frame_time': frame['frame_time'],
# 'region_id': frame['region_id'],
# 'size': size,
# 'x_offset': x_offset,
# 'y_offset': y_offset
# })
# print('object too close to region border')
#continue
self.camera.detected_objects.append(obj)
with self.camera.objects_parsed:
self.camera.objects_parsed.notify_all()
# Maintains the frame and object with the highest score
class BestFrames(threading.Thread):
2019-03-27 12:17:00 +01:00
def __init__(self, objects_parsed, recent_frames, detected_objects):
threading.Thread.__init__(self)
self.objects_parsed = objects_parsed
self.recent_frames = recent_frames
self.detected_objects = detected_objects
self.best_objects = {}
self.best_frames = {}
def run(self):
prctl.set_name("BestFrames")
while True:
2019-03-27 12:17:00 +01:00
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
2019-03-27 12:17:00 +01:00
# make a copy of detected objects
detected_objects = self.detected_objects.copy()
for obj in detected_objects:
if obj['name'] in self.best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
self.best_objects[obj['name']] = obj
else:
self.best_objects[obj['name']] = obj
2019-03-30 13:58:31 +01:00
# make a copy of the recent frames
recent_frames = self.recent_frames.copy()
2019-03-27 12:17:00 +01:00
for name, obj in self.best_objects.items():
if obj['frame_time'] in recent_frames:
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
draw_box_with_label(best_frame, obj['xmin'], obj['ymin'],
obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
self.best_frames[name] = best_frame