2019-02-26 03:27:02 +01:00
|
|
|
import time
|
|
|
|
import datetime
|
|
|
|
import threading
|
2019-02-28 03:55:07 +01:00
|
|
|
import cv2
|
2019-12-23 13:01:32 +01:00
|
|
|
import prctl
|
2019-12-14 22:18:21 +01:00
|
|
|
import numpy as np
|
2019-12-23 13:40:48 +01:00
|
|
|
from . util import draw_box_with_label, LABELS
|
2019-02-26 03:27:02 +01:00
|
|
|
|
|
|
|
class ObjectCleaner(threading.Thread):
|
2019-03-27 12:17:00 +01:00
|
|
|
def __init__(self, objects_parsed, detected_objects):
|
2019-02-26 03:27:02 +01:00
|
|
|
threading.Thread.__init__(self)
|
|
|
|
self._objects_parsed = objects_parsed
|
|
|
|
self._detected_objects = detected_objects
|
|
|
|
|
|
|
|
def run(self):
|
2019-12-23 13:01:32 +01:00
|
|
|
prctl.set_name("ObjectCleaner")
|
2019-02-26 03:27:02 +01:00
|
|
|
while True:
|
|
|
|
|
2019-03-27 12:17:00 +01:00
|
|
|
# wait a bit before checking for expired frames
|
|
|
|
time.sleep(0.2)
|
|
|
|
|
|
|
|
# expire the objects that are more than 1 second old
|
|
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
# look for the first object found within the last second
|
|
|
|
# (newest objects are appended to the end)
|
|
|
|
detected_objects = self._detected_objects.copy()
|
|
|
|
|
|
|
|
num_to_delete = 0
|
|
|
|
for obj in detected_objects:
|
|
|
|
if now-obj['frame_time']<2:
|
|
|
|
break
|
|
|
|
num_to_delete += 1
|
|
|
|
if num_to_delete > 0:
|
|
|
|
del self._detected_objects[:num_to_delete]
|
|
|
|
|
|
|
|
# notify that parsed objects were changed
|
|
|
|
with self._objects_parsed:
|
|
|
|
self._objects_parsed.notify_all()
|
2019-03-16 02:15:41 +01:00
|
|
|
|
2019-12-23 13:40:48 +01:00
|
|
|
class DetectedObjectsProcessor(threading.Thread):
|
|
|
|
def __init__(self, camera):
|
|
|
|
threading.Thread.__init__(self)
|
|
|
|
self.camera = camera
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
prctl.set_name(self.__class__.__name__)
|
|
|
|
while True:
|
|
|
|
frame = self.camera.detected_objects_queue.get()
|
|
|
|
|
|
|
|
objects = frame['detected_objects']
|
|
|
|
|
|
|
|
if len(objects) == 0:
|
|
|
|
return
|
|
|
|
|
|
|
|
for raw_obj in objects:
|
|
|
|
obj = {
|
|
|
|
'score': float(raw_obj.score),
|
|
|
|
'box': raw_obj.bounding_box.flatten().tolist(),
|
|
|
|
'name': str(LABELS[raw_obj.label_id]),
|
|
|
|
'frame_time': frame['frame_time'],
|
|
|
|
'region_id': frame['region_id']
|
|
|
|
}
|
|
|
|
|
|
|
|
# find the matching region
|
|
|
|
region = self.camera.regions[frame['region_id']]
|
|
|
|
|
|
|
|
# Compute some extra properties
|
|
|
|
obj.update({
|
|
|
|
'xmin': int((obj['box'][0] * frame['size']) + frame['x_offset']),
|
|
|
|
'ymin': int((obj['box'][1] * frame['size']) + frame['y_offset']),
|
|
|
|
'xmax': int((obj['box'][2] * frame['size']) + frame['x_offset']),
|
|
|
|
'ymax': int((obj['box'][3] * frame['size']) + frame['y_offset'])
|
|
|
|
})
|
|
|
|
|
|
|
|
# Compute the area
|
|
|
|
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
|
|
|
|
|
|
|
object_name = obj['name']
|
|
|
|
|
|
|
|
if object_name in region['objects']:
|
|
|
|
obj_settings = region['objects'][object_name]
|
|
|
|
|
|
|
|
# if the min area is larger than the
|
|
|
|
# detected object, don't add it to detected objects
|
|
|
|
if obj_settings.get('min_area',-1) > obj['area']:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# if the detected object is larger than the
|
|
|
|
# max area, don't add it to detected objects
|
|
|
|
if obj_settings.get('max_area', region['size']**2) < obj['area']:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# if the score is lower than the threshold, skip
|
|
|
|
if obj_settings.get('threshold', 0) > obj['score']:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# compute the coordinates of the object and make sure
|
|
|
|
# the location isnt outside the bounds of the image (can happen from rounding)
|
|
|
|
y_location = min(int(obj['ymax']), len(self.mask)-1)
|
|
|
|
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
|
|
|
|
|
|
|
|
# if the object is in a masked location, don't add it to detected objects
|
|
|
|
if self.camera.mask[y_location][x_location] == [0]:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# look to see if the bounding box is too close to the region border and the region border is not the edge of the frame
|
|
|
|
# if ((frame['x_offset'] > 0 and obj['box'][0] < 0.01) or
|
|
|
|
# (frame['y_offset'] > 0 and obj['box'][1] < 0.01) or
|
|
|
|
# (frame['x_offset']+frame['size'] < self.frame_shape[1] and obj['box'][2] > 0.99) or
|
|
|
|
# (frame['y_offset']+frame['size'] < self.frame_shape[0] and obj['box'][3] > 0.99)):
|
|
|
|
|
|
|
|
# size, x_offset, y_offset = calculate_region(self.frame_shape, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
|
|
|
|
# This triggers WAY too often with stationary objects on the edge of a region.
|
|
|
|
# Every frame triggers it and fills the queue...
|
|
|
|
# I need to create a new region and add it to the list of regions, but
|
|
|
|
# it needs to check for a duplicate region first.
|
|
|
|
|
|
|
|
# self.resize_queue.put({
|
|
|
|
# 'camera_name': self.name,
|
|
|
|
# 'frame_time': frame['frame_time'],
|
|
|
|
# 'region_id': frame['region_id'],
|
|
|
|
# 'size': size,
|
|
|
|
# 'x_offset': x_offset,
|
|
|
|
# 'y_offset': y_offset
|
|
|
|
# })
|
|
|
|
# print('object too close to region border')
|
|
|
|
#continue
|
|
|
|
|
|
|
|
self.camera.detected_objects.append(obj)
|
|
|
|
|
|
|
|
with self.camera.objects_parsed:
|
|
|
|
self.camera.objects_parsed.notify_all()
|
|
|
|
|
2019-02-28 03:55:07 +01:00
|
|
|
|
2019-12-14 22:18:21 +01:00
|
|
|
# Maintains the frame and object with the highest score
|
|
|
|
class BestFrames(threading.Thread):
|
2019-03-27 12:17:00 +01:00
|
|
|
def __init__(self, objects_parsed, recent_frames, detected_objects):
|
2019-02-28 03:55:07 +01:00
|
|
|
threading.Thread.__init__(self)
|
|
|
|
self.objects_parsed = objects_parsed
|
|
|
|
self.recent_frames = recent_frames
|
|
|
|
self.detected_objects = detected_objects
|
2019-12-14 22:18:21 +01:00
|
|
|
self.best_objects = {}
|
|
|
|
self.best_frames = {}
|
2019-02-28 03:55:07 +01:00
|
|
|
|
|
|
|
def run(self):
|
2019-12-23 13:01:32 +01:00
|
|
|
prctl.set_name("BestFrames")
|
2019-02-28 03:55:07 +01:00
|
|
|
while True:
|
|
|
|
|
2019-03-27 12:17:00 +01:00
|
|
|
# wait until objects have been parsed
|
|
|
|
with self.objects_parsed:
|
|
|
|
self.objects_parsed.wait()
|
2019-02-28 03:55:07 +01:00
|
|
|
|
2019-03-27 12:17:00 +01:00
|
|
|
# make a copy of detected objects
|
|
|
|
detected_objects = self.detected_objects.copy()
|
2019-02-28 03:55:07 +01:00
|
|
|
|
2019-12-14 22:18:21 +01:00
|
|
|
for obj in detected_objects:
|
|
|
|
if obj['name'] in self.best_objects:
|
|
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
# if the object is a higher score than the current best score
|
|
|
|
# or the current object is more than 1 minute old, use the new object
|
|
|
|
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
|
|
|
|
self.best_objects[obj['name']] = obj
|
|
|
|
else:
|
|
|
|
self.best_objects[obj['name']] = obj
|
2019-03-30 13:58:31 +01:00
|
|
|
|
|
|
|
# make a copy of the recent frames
|
|
|
|
recent_frames = self.recent_frames.copy()
|
2019-03-27 12:17:00 +01:00
|
|
|
|
2019-12-14 22:18:21 +01:00
|
|
|
for name, obj in self.best_objects.items():
|
|
|
|
if obj['frame_time'] in recent_frames:
|
|
|
|
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
|
|
|
|
|
|
|
|
draw_box_with_label(best_frame, obj['xmin'], obj['ymin'],
|
2019-12-14 23:38:01 +01:00
|
|
|
obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
|
2019-12-14 22:18:21 +01:00
|
|
|
|
|
|
|
# print a timestamp
|
|
|
|
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
|
|
|
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
|
|
|
|
2019-12-23 13:01:32 +01:00
|
|
|
self.best_frames[name] = best_frame
|