2019-12-23 13:01:32 +01:00
|
|
|
import collections
|
2020-11-04 13:31:25 +01:00
|
|
|
import datetime
|
|
|
|
import hashlib
|
2020-11-03 15:15:58 +01:00
|
|
|
import json
|
2021-01-14 14:19:12 +01:00
|
|
|
import logging
|
2020-11-04 13:31:25 +01:00
|
|
|
import signal
|
2020-11-03 15:15:58 +01:00
|
|
|
import subprocess as sp
|
2019-12-23 13:01:32 +01:00
|
|
|
import threading
|
2020-11-04 13:31:25 +01:00
|
|
|
import time
|
|
|
|
import traceback
|
|
|
|
from abc import ABC, abstractmethod
|
2020-09-22 04:02:00 +02:00
|
|
|
from multiprocessing import shared_memory
|
|
|
|
from typing import AnyStr
|
2019-12-14 23:38:01 +01:00
|
|
|
|
2020-11-04 13:31:25 +01:00
|
|
|
import cv2
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
|
2021-01-14 14:19:12 +01:00
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
2020-11-04 13:31:25 +01:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
|
|
|
|
if color is None:
|
|
|
|
color = (0,0,255)
|
|
|
|
display_text = "{}: {}".format(label, info)
|
|
|
|
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
|
|
|
|
font_scale = 0.5
|
|
|
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
|
|
|
# get the width and height of the text box
|
|
|
|
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
|
|
|
|
text_width = size[0][0]
|
|
|
|
text_height = size[0][1]
|
|
|
|
line_height = text_height + size[1]
|
|
|
|
# set the text start position
|
|
|
|
if position == 'ul':
|
|
|
|
text_offset_x = x_min
|
|
|
|
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
|
|
|
elif position == 'ur':
|
|
|
|
text_offset_x = x_max - (text_width+8)
|
|
|
|
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
|
|
|
elif position == 'bl':
|
|
|
|
text_offset_x = x_min
|
|
|
|
text_offset_y = y_max
|
|
|
|
elif position == 'br':
|
|
|
|
text_offset_x = x_max - (text_width+8)
|
|
|
|
text_offset_y = y_max
|
|
|
|
# make the coords of the box with a small padding of two pixels
|
|
|
|
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
|
|
|
|
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
|
|
|
|
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
|
|
|
|
|
|
|
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
|
2020-12-12 13:59:38 +01:00
|
|
|
# size is the longest edge and divisible by 4
|
|
|
|
size = int(max(xmax-xmin, ymax-ymin)//4*4*multiplier)
|
2020-09-07 19:17:42 +02:00
|
|
|
# dont go any smaller than 300
|
|
|
|
if size < 300:
|
|
|
|
size = 300
|
2019-12-23 13:01:32 +01:00
|
|
|
|
|
|
|
# x_offset is midpoint of bounding box minus half the size
|
2019-12-31 21:59:22 +01:00
|
|
|
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
2019-12-23 13:01:32 +01:00
|
|
|
# if outside the image
|
|
|
|
if x_offset < 0:
|
|
|
|
x_offset = 0
|
|
|
|
elif x_offset > (frame_shape[1]-size):
|
2020-12-12 13:59:38 +01:00
|
|
|
x_offset = max(0, (frame_shape[1]-size))
|
2019-12-23 13:01:32 +01:00
|
|
|
|
2019-12-31 21:59:22 +01:00
|
|
|
# y_offset is midpoint of bounding box minus half the size
|
|
|
|
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
2020-12-12 13:59:38 +01:00
|
|
|
# # if outside the image
|
2019-12-23 13:01:32 +01:00
|
|
|
if y_offset < 0:
|
|
|
|
y_offset = 0
|
|
|
|
elif y_offset > (frame_shape[0]-size):
|
2020-12-12 13:59:38 +01:00
|
|
|
y_offset = max(0, (frame_shape[0]-size))
|
2019-12-23 13:01:32 +01:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
return (x_offset, y_offset, x_offset+size, y_offset+size)
|
2019-12-23 13:01:32 +01:00
|
|
|
|
2020-12-12 13:59:38 +01:00
|
|
|
def get_yuv_crop(frame_shape, crop):
|
|
|
|
# crop should be (x1,y1,x2,y2)
|
|
|
|
frame_height = frame_shape[0]//3*2
|
|
|
|
frame_width = frame_shape[1]
|
|
|
|
|
|
|
|
# compute the width/height of the uv channels
|
|
|
|
uv_width = frame_width//2 # width of the uv channels
|
|
|
|
uv_height = frame_height//4 # height of the uv channels
|
|
|
|
|
|
|
|
# compute the offset for upper left corner of the uv channels
|
|
|
|
uv_x_offset = crop[0]//2 # x offset of the uv channels
|
|
|
|
uv_y_offset = crop[1]//4 # y offset of the uv channels
|
|
|
|
|
|
|
|
# compute the width/height of the uv crops
|
|
|
|
uv_crop_width = (crop[2] - crop[0])//2 # width of the cropped uv channels
|
|
|
|
uv_crop_height = (crop[3] - crop[1])//4 # height of the cropped uv channels
|
|
|
|
|
|
|
|
# ensure crop dimensions are multiples of 2 and 4
|
|
|
|
y = (
|
|
|
|
crop[0],
|
|
|
|
crop[1],
|
|
|
|
crop[0] + uv_crop_width*2,
|
|
|
|
crop[1] + uv_crop_height*4
|
|
|
|
)
|
|
|
|
|
|
|
|
u1 = (
|
|
|
|
0 + uv_x_offset,
|
|
|
|
frame_height + uv_y_offset,
|
|
|
|
0 + uv_x_offset + uv_crop_width,
|
|
|
|
frame_height + uv_y_offset + uv_crop_height
|
|
|
|
)
|
|
|
|
|
|
|
|
u2 = (
|
|
|
|
uv_width + uv_x_offset,
|
|
|
|
frame_height + uv_y_offset,
|
|
|
|
uv_width + uv_x_offset + uv_crop_width,
|
|
|
|
frame_height + uv_y_offset + uv_crop_height
|
|
|
|
)
|
|
|
|
|
|
|
|
v1 = (
|
|
|
|
0 + uv_x_offset,
|
|
|
|
frame_height + uv_height + uv_y_offset,
|
|
|
|
0 + uv_x_offset + uv_crop_width,
|
|
|
|
frame_height + uv_height + uv_y_offset + uv_crop_height
|
|
|
|
)
|
|
|
|
|
|
|
|
v2 = (
|
|
|
|
uv_width + uv_x_offset,
|
|
|
|
frame_height + uv_height + uv_y_offset,
|
|
|
|
uv_width + uv_x_offset + uv_crop_width,
|
|
|
|
frame_height + uv_height + uv_y_offset + uv_crop_height
|
|
|
|
)
|
|
|
|
|
|
|
|
return y, u1, u2, v1, v2
|
|
|
|
|
2020-10-11 04:28:12 +02:00
|
|
|
def yuv_region_2_rgb(frame, region):
|
2020-12-12 13:59:38 +01:00
|
|
|
try:
|
|
|
|
height = frame.shape[0]//3*2
|
|
|
|
width = frame.shape[1]
|
|
|
|
|
|
|
|
# get the crop box if the region extends beyond the frame
|
|
|
|
crop_x1 = max(0, region[0])
|
|
|
|
crop_y1 = max(0, region[1])
|
|
|
|
# ensure these are a multiple of 4
|
|
|
|
crop_x2 = min(width, region[2])
|
|
|
|
crop_y2 = min(height, region[3])
|
|
|
|
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
|
|
|
|
|
|
|
|
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
|
|
|
|
|
|
|
|
# if the region starts outside the frame, indent the start point in the cropped frame
|
|
|
|
y_channel_x_offset = abs(min(0, region[0]))
|
|
|
|
y_channel_y_offset = abs(min(0, region[1]))
|
|
|
|
|
|
|
|
uv_channel_x_offset = y_channel_x_offset//2
|
|
|
|
uv_channel_y_offset = y_channel_y_offset//4
|
|
|
|
|
|
|
|
# create the yuv region frame
|
|
|
|
# make sure the size is a multiple of 4
|
|
|
|
size = (region[3] - region[1])//4*4
|
|
|
|
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
|
|
|
|
# fill in black
|
|
|
|
yuv_cropped_frame[:] = 128
|
|
|
|
yuv_cropped_frame[0:size,0:size] = 16
|
|
|
|
|
|
|
|
# copy the y channel
|
|
|
|
yuv_cropped_frame[
|
|
|
|
y_channel_y_offset:y_channel_y_offset + y[3] - y[1],
|
|
|
|
y_channel_x_offset:y_channel_x_offset + y[2] - y[0]
|
|
|
|
] = frame[
|
|
|
|
y[1]:y[3],
|
|
|
|
y[0]:y[2]
|
|
|
|
]
|
|
|
|
|
|
|
|
uv_crop_width = u1[2] - u1[0]
|
|
|
|
uv_crop_height = u1[3] - u1[1]
|
|
|
|
|
|
|
|
# copy u1
|
|
|
|
yuv_cropped_frame[
|
|
|
|
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
|
|
|
|
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
|
|
|
|
] = frame[
|
|
|
|
u1[1]:u1[3],
|
|
|
|
u1[0]:u1[2]
|
|
|
|
]
|
|
|
|
|
|
|
|
# copy u2
|
|
|
|
yuv_cropped_frame[
|
|
|
|
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
|
|
|
|
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
|
|
|
|
] = frame[
|
|
|
|
u2[1]:u2[3],
|
|
|
|
u2[0]:u2[2]
|
|
|
|
]
|
|
|
|
|
|
|
|
# copy v1
|
|
|
|
yuv_cropped_frame[
|
|
|
|
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
|
|
|
|
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
|
|
|
|
] = frame[
|
|
|
|
v1[1]:v1[3],
|
|
|
|
v1[0]:v1[2]
|
|
|
|
]
|
|
|
|
|
|
|
|
# copy v2
|
|
|
|
yuv_cropped_frame[
|
|
|
|
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
|
|
|
|
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
|
|
|
|
] = frame[
|
|
|
|
v2[1]:v2[3],
|
|
|
|
v2[0]:v2[2]
|
|
|
|
]
|
|
|
|
|
|
|
|
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
|
|
|
|
except:
|
|
|
|
print(f"frame.shape: {frame.shape}")
|
|
|
|
print(f"region: {region}")
|
|
|
|
raise
|
2020-10-11 04:28:12 +02:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
def intersection(box_a, box_b):
|
|
|
|
return (
|
|
|
|
max(box_a[0], box_b[0]),
|
|
|
|
max(box_a[1], box_b[1]),
|
|
|
|
min(box_a[2], box_b[2]),
|
|
|
|
min(box_a[3], box_b[3])
|
|
|
|
)
|
|
|
|
|
|
|
|
def area(box):
|
|
|
|
return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
|
2019-12-31 21:59:22 +01:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
def intersection_over_union(box_a, box_b):
|
2019-12-31 21:59:22 +01:00
|
|
|
# determine the (x, y)-coordinates of the intersection rectangle
|
2020-02-16 04:07:54 +01:00
|
|
|
intersect = intersection(box_a, box_b)
|
2019-12-31 21:59:22 +01:00
|
|
|
|
|
|
|
# compute the area of intersection rectangle
|
2020-02-16 04:07:54 +01:00
|
|
|
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
|
2019-12-31 21:59:22 +01:00
|
|
|
|
|
|
|
if inter_area == 0:
|
|
|
|
return 0.0
|
|
|
|
|
|
|
|
# compute the area of both the prediction and ground-truth
|
|
|
|
# rectangles
|
2020-02-16 04:07:54 +01:00
|
|
|
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
|
|
|
|
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
|
2019-12-31 21:59:22 +01:00
|
|
|
|
|
|
|
# compute the intersection over union by taking the intersection
|
|
|
|
# area and dividing it by the sum of prediction + ground-truth
|
|
|
|
# areas - the interesection area
|
|
|
|
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
|
|
|
|
|
|
|
# return the intersection over union value
|
|
|
|
return iou
|
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
def clipped(obj, frame_shape):
|
|
|
|
# if the object is within 5 pixels of the region border, and the region is not on the edge
|
|
|
|
# consider the object to be clipped
|
|
|
|
box = obj[2]
|
|
|
|
region = obj[4]
|
|
|
|
if ((region[0] > 5 and box[0]-region[0] <= 5) or
|
|
|
|
(region[1] > 5 and box[1]-region[1] <= 5) or
|
|
|
|
(frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
|
|
|
|
(frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
|
|
|
|
return True
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
2019-12-23 13:01:32 +01:00
|
|
|
class EventsPerSecond:
|
|
|
|
def __init__(self, max_events=1000):
|
|
|
|
self._start = None
|
|
|
|
self._max_events = max_events
|
|
|
|
self._timestamps = []
|
|
|
|
|
|
|
|
def start(self):
|
|
|
|
self._start = datetime.datetime.now().timestamp()
|
|
|
|
|
|
|
|
def update(self):
|
2020-09-13 05:29:53 +02:00
|
|
|
if self._start is None:
|
|
|
|
self.start()
|
2019-12-23 13:01:32 +01:00
|
|
|
self._timestamps.append(datetime.datetime.now().timestamp())
|
|
|
|
# truncate the list when it goes 100 over the max_size
|
|
|
|
if len(self._timestamps) > self._max_events+100:
|
|
|
|
self._timestamps = self._timestamps[(1-self._max_events):]
|
|
|
|
|
|
|
|
def eps(self, last_n_seconds=10):
|
2020-09-13 05:29:53 +02:00
|
|
|
if self._start is None:
|
|
|
|
self.start()
|
2019-12-23 13:01:32 +01:00
|
|
|
# compute the (approximate) events in the last n seconds
|
|
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
seconds = min(now-self._start, last_n_seconds)
|
|
|
|
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
|
2020-03-10 03:12:19 +01:00
|
|
|
|
|
|
|
def print_stack(sig, frame):
|
|
|
|
traceback.print_stack(frame)
|
|
|
|
|
|
|
|
def listen():
|
2020-03-14 21:32:51 +01:00
|
|
|
signal.signal(signal.SIGUSR1, print_stack)
|
|
|
|
|
2021-01-14 14:19:12 +01:00
|
|
|
def create_mask(frame_shape, mask):
|
|
|
|
mask_img = np.zeros(frame_shape, np.uint8)
|
|
|
|
mask_img[:] = 255
|
|
|
|
|
|
|
|
if isinstance(mask, list):
|
|
|
|
for m in mask:
|
|
|
|
add_mask(m, mask_img)
|
|
|
|
|
|
|
|
elif isinstance(mask, str):
|
|
|
|
add_mask(mask, mask_img)
|
|
|
|
|
|
|
|
return mask_img
|
|
|
|
|
|
|
|
def add_mask(mask, mask_img):
|
|
|
|
if mask.startswith('poly,'):
|
|
|
|
points = mask.split(',')[1:]
|
|
|
|
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
|
|
|
cv2.fillPoly(mask_img, pts=[contour], color=(0))
|
|
|
|
else:
|
|
|
|
mask_file = cv2.imread(f"/config/{mask}", cv2.IMREAD_GRAYSCALE)
|
|
|
|
if mask_file is None or mask_file.size == 0:
|
|
|
|
logger.warning(f"Could not read mask file {mask}")
|
|
|
|
else:
|
|
|
|
mask_img[np.where(mask_file==[0])] = [0]
|
|
|
|
|
2020-08-22 14:05:20 +02:00
|
|
|
class FrameManager(ABC):
|
2020-09-22 04:02:00 +02:00
|
|
|
@abstractmethod
|
|
|
|
def create(self, name, size) -> AnyStr:
|
|
|
|
pass
|
|
|
|
|
2020-08-22 14:05:20 +02:00
|
|
|
@abstractmethod
|
|
|
|
def get(self, name, timeout_ms=0):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
2020-09-22 04:02:00 +02:00
|
|
|
def close(self, name):
|
2020-08-22 14:05:20 +02:00
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def delete(self, name):
|
|
|
|
pass
|
|
|
|
|
|
|
|
class DictFrameManager(FrameManager):
|
|
|
|
def __init__(self):
|
|
|
|
self.frames = {}
|
|
|
|
|
2020-09-22 04:02:00 +02:00
|
|
|
def create(self, name, size) -> AnyStr:
|
|
|
|
mem = bytearray(size)
|
|
|
|
self.frames[name] = mem
|
|
|
|
return mem
|
2020-08-22 14:05:20 +02:00
|
|
|
|
2020-09-22 04:02:00 +02:00
|
|
|
def get(self, name, shape):
|
|
|
|
mem = self.frames[name]
|
|
|
|
return np.ndarray(shape, dtype=np.uint8, buffer=mem)
|
|
|
|
|
|
|
|
def close(self, name):
|
|
|
|
pass
|
2020-08-22 14:05:20 +02:00
|
|
|
|
|
|
|
def delete(self, name):
|
|
|
|
del self.frames[name]
|
|
|
|
|
2020-09-22 04:02:00 +02:00
|
|
|
class SharedMemoryFrameManager(FrameManager):
|
|
|
|
def __init__(self):
|
|
|
|
self.shm_store = {}
|
2020-03-14 21:32:51 +01:00
|
|
|
|
2020-09-22 04:02:00 +02:00
|
|
|
def create(self, name, size) -> AnyStr:
|
|
|
|
shm = shared_memory.SharedMemory(name=name, create=True, size=size)
|
|
|
|
self.shm_store[name] = shm
|
|
|
|
return shm.buf
|
|
|
|
|
|
|
|
def get(self, name, shape):
|
|
|
|
if name in self.shm_store:
|
|
|
|
shm = self.shm_store[name]
|
|
|
|
else:
|
|
|
|
shm = shared_memory.SharedMemory(name=name)
|
|
|
|
self.shm_store[name] = shm
|
|
|
|
return np.ndarray(shape, dtype=np.uint8, buffer=shm.buf)
|
|
|
|
|
|
|
|
def close(self, name):
|
|
|
|
if name in self.shm_store:
|
|
|
|
self.shm_store[name].close()
|
|
|
|
del self.shm_store[name]
|
2020-03-14 21:32:51 +01:00
|
|
|
|
|
|
|
def delete(self, name):
|
2020-09-22 04:02:00 +02:00
|
|
|
if name in self.shm_store:
|
|
|
|
self.shm_store[name].close()
|
|
|
|
self.shm_store[name].unlink()
|
2020-11-04 13:31:25 +01:00
|
|
|
del self.shm_store[name]
|