blakeblackshear.frigate/frigate/detectors/plugins/edgetpu_tfl.py

99 lines
3.6 KiB
Python
Raw Normal View History

import logging
import numpy as np
from pydantic import Field
from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
import frigate.detectors.yolo_utils as yolo_utils
try:
from tflite_runtime.interpreter import Interpreter, load_delegate
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter, load_delegate
logger = logging.getLogger(__name__)
DETECTOR_KEY = "edgetpu"
class EdgeTpuDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
device: str = Field(default=None, title="Device Type")
class EdgeTpuTfl(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: EdgeTpuDetectorConfig):
device_config = {}
if detector_config.device is not None:
device_config = {"device": detector_config.device}
edge_tpu_delegate = None
try:
device_type = (
device_config["device"] if "device" in device_config else "auto"
)
logger.info(f"Attempting to load TPU as {device_type}")
edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
logger.info("TPU found")
self.interpreter = Interpreter(
model_path=detector_config.model.path,
experimental_delegates=[edge_tpu_delegate],
)
except ValueError:
logger.error(
"No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
)
raise
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
self.model_type = detector_config.model.model_type
def detect_raw(self, tensor_input):
if self.model_type == 'yolov8':
scale, zero_point = self.tensor_input_details[0]['quantization']
tensor_input = ((tensor_input - scale * zero_point * 255) * (1.0 / (scale * 255))).astype(self.tensor_input_details[0]['dtype'])
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
self.interpreter.invoke()
if self.model_type == 'yolov8':
scale, zero_point = self.tensor_output_details[0]['quantization']
tensor_output = self.interpreter.get_tensor(self.tensor_output_details[0]['index'])
tensor_output = (tensor_output.astype(np.float32) - zero_point) * scale
model_input_shape = self.tensor_input_details[0]['shape']
tensor_output[:, [0, 2]] *= model_input_shape[2]
tensor_output[:, [1, 3]] *= model_input_shape[1]
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
count = int(
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
)
detections = np.zeros((20, 6), np.float32)
for i in range(count):
if scores[i] < 0.4 or i == 20:
break
detections[i] = [
class_ids[i],
float(scores[i]),
boxes[i][0],
boxes[i][1],
boxes[i][2],
boxes[i][3],
]
return detections