2023-11-02 13:55:24 +01:00
|
|
|
import logging
|
|
|
|
from typing import Literal
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import cv2.dnn
|
|
|
|
import numpy as np
|
2023-11-04 13:56:35 +01:00
|
|
|
|
|
|
|
try:
|
|
|
|
from hide_warnings import hide_warnings
|
|
|
|
except: # noqa: E722
|
|
|
|
|
|
|
|
def hide_warnings(func):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2023-11-02 13:55:24 +01:00
|
|
|
from pydantic import Field
|
|
|
|
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
|
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
DETECTOR_KEY = "rknn"
|
|
|
|
|
|
|
|
|
|
|
|
class RknnDetectorConfig(BaseDetectorConfig):
|
|
|
|
type: Literal[DETECTOR_KEY]
|
|
|
|
score_thresh: float = Field(
|
|
|
|
default=0.5, ge=0, le=1, title="Minimal confidence for detection."
|
|
|
|
)
|
|
|
|
nms_thresh: float = Field(
|
|
|
|
default=0.45, ge=0, le=1, title="IoU threshold for non-maximum suppression."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class Rknn(DetectionApi):
|
|
|
|
type_key = DETECTOR_KEY
|
|
|
|
|
|
|
|
def __init__(self, config: RknnDetectorConfig):
|
|
|
|
self.height = config.model.height
|
|
|
|
self.width = config.model.width
|
|
|
|
self.score_thresh = config.score_thresh
|
|
|
|
self.nms_thresh = config.nms_thresh
|
|
|
|
|
|
|
|
self.model_path = config.model.path or "/models/yolov8n-320x320.rknn"
|
|
|
|
|
2023-11-03 01:12:54 +01:00
|
|
|
from rknnlite.api import RKNNLite
|
|
|
|
|
2023-11-02 13:55:24 +01:00
|
|
|
self.rknn = RKNNLite(verbose=False)
|
|
|
|
if self.rknn.load_rknn(self.model_path) != 0:
|
|
|
|
logger.error("Error initializing rknn model.")
|
|
|
|
if self.rknn.init_runtime() != 0:
|
|
|
|
logger.error("Error initializing rknn runtime.")
|
|
|
|
|
|
|
|
def __del__(self):
|
|
|
|
self.rknn.release()
|
|
|
|
|
|
|
|
def postprocess(self, results):
|
|
|
|
"""
|
|
|
|
Processes yolov8 output.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
results: array with shape: (1, 84, n, 1) where n depends on yolov8 model size (for 320x320 model n=2100)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
detections: array with shape (20, 6) with 20 rows of (class, confidence, y_min, x_min, y_max, x_max)
|
|
|
|
"""
|
|
|
|
|
|
|
|
results = np.transpose(results[0, :, :, 0]) # array shape (2100, 84)
|
|
|
|
classes = np.argmax(
|
|
|
|
results[:, 4:], axis=1
|
|
|
|
) # array shape (2100,); index of class with max confidence of each row
|
|
|
|
scores = np.max(
|
|
|
|
results[:, 4:], axis=1
|
|
|
|
) # array shape (2100,); max confidence of each row
|
|
|
|
|
|
|
|
# array shape (2100, 4); bounding box of each row
|
|
|
|
boxes = np.transpose(
|
|
|
|
np.vstack(
|
|
|
|
(
|
|
|
|
results[:, 0] - 0.5 * results[:, 2],
|
|
|
|
results[:, 1] - 0.5 * results[:, 3],
|
|
|
|
results[:, 2],
|
|
|
|
results[:, 3],
|
|
|
|
)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
# indices of rows with confidence > SCORE_THRESH with Non-maximum Suppression (NMS)
|
|
|
|
result_boxes = cv2.dnn.NMSBoxes(
|
|
|
|
boxes, scores, self.score_thresh, self.nms_thresh, 0.5
|
|
|
|
)
|
|
|
|
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
|
|
|
|
for i in range(len(result_boxes)):
|
|
|
|
if i >= 20:
|
|
|
|
break
|
|
|
|
|
|
|
|
index = result_boxes[i]
|
|
|
|
detections[i] = [
|
|
|
|
classes[index],
|
|
|
|
scores[index],
|
|
|
|
(boxes[index][1]) / self.height,
|
|
|
|
(boxes[index][0]) / self.width,
|
|
|
|
(boxes[index][1] + boxes[index][3]) / self.height,
|
|
|
|
(boxes[index][0] + boxes[index][2]) / self.width,
|
|
|
|
]
|
|
|
|
|
|
|
|
return detections
|
|
|
|
|
|
|
|
@hide_warnings
|
|
|
|
def inference(self, tensor_input):
|
|
|
|
return self.rknn.inference(inputs=tensor_input)
|
|
|
|
|
|
|
|
def detect_raw(self, tensor_input):
|
|
|
|
output = self.inference(
|
|
|
|
[
|
|
|
|
tensor_input,
|
|
|
|
]
|
|
|
|
)
|
|
|
|
return self.postprocess(output[0])
|