blakeblackshear.frigate/frigate/motion.py

84 lines
3.9 KiB
Python
Raw Normal View History

2020-02-09 14:39:24 +01:00
import cv2
import imutils
import numpy as np
2020-11-04 13:31:25 +01:00
2020-02-09 14:39:24 +01:00
class MotionDetector():
2020-02-16 04:07:54 +01:00
def __init__(self, frame_shape, mask, resize_factor=4):
2020-10-10 17:07:14 +02:00
self.frame_shape = frame_shape
2020-02-09 14:39:24 +01:00
self.resize_factor = resize_factor
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
self.motion_frame_count = 0
self.frame_counter = 0
2020-02-16 04:07:54 +01:00
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
self.mask = np.where(resized_mask==[0])
2020-02-09 14:39:24 +01:00
def detect(self, frame):
motion_boxes = []
2020-10-10 17:07:14 +02:00
gray = frame[0:self.frame_shape[0], 0:self.frame_shape[1]]
2020-02-09 14:39:24 +01:00
# resize frame
2020-10-10 17:07:14 +02:00
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
2020-02-09 14:39:24 +01:00
# convert to grayscale
2020-10-10 17:07:14 +02:00
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
2020-02-09 14:39:24 +01:00
2020-02-16 04:07:54 +01:00
# mask frame
2020-10-10 17:07:14 +02:00
resized_frame[self.mask] = [255]
2020-02-16 04:07:54 +01:00
2020-02-09 14:39:24 +01:00
# it takes ~30 frames to establish a baseline
# dont bother looking for motion
if self.frame_counter < 30:
self.frame_counter += 1
else:
# compare to average
2020-10-10 17:07:14 +02:00
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
2020-02-09 14:39:24 +01:00
# compute the average delta over the past few frames
# the alpha value can be modified to configure how sensitive the motion detection is.
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
# register as motion, too low and a fast moving person wont be detected as motion
# this also assumes that a person is in the same location across more than a single frame
cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2)
# compute the threshold image for the current frame
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# black out everything in the avg_delta where there isnt motion in the current frame
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh)
2020-02-09 14:39:24 +01:00
# then look for deltas above the threshold, but only in areas where there is a delta
# in the current frame. this prevents deltas from previous frames from being included
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# loop over the contours
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > 100:
x, y, w, h = cv2.boundingRect(c)
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
if len(motion_boxes) > 0:
self.motion_frame_count += 1
# TODO: this really depends on FPS
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for at least 3 frames
2020-10-10 17:07:14 +02:00
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
2020-02-09 14:39:24 +01:00
else:
# when no motion, just keep averaging the frames together
2020-10-10 17:07:14 +02:00
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
2020-02-09 14:39:24 +01:00
self.motion_frame_count = 0
2020-11-04 13:31:25 +01:00
return motion_boxes