blakeblackshear.frigate/frigate/objects.py

528 lines
23 KiB
Python
Raw Normal View History

2019-02-26 03:27:02 +01:00
import time
import datetime
import threading
import cv2
import prctl
2019-12-31 21:59:22 +01:00
import itertools
import numpy as np
2019-12-31 21:59:22 +01:00
from scipy.spatial import distance as dist
2020-01-04 19:00:29 +01:00
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
2019-02-26 03:27:02 +01:00
class ObjectCleaner(threading.Thread):
2019-03-27 12:17:00 +01:00
def __init__(self, objects_parsed, detected_objects):
2019-02-26 03:27:02 +01:00
threading.Thread.__init__(self)
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
def run(self):
prctl.set_name("ObjectCleaner")
2019-02-26 03:27:02 +01:00
while True:
2019-03-27 12:17:00 +01:00
# wait a bit before checking for expired frames
time.sleep(0.2)
# expire the objects that are more than 1 second old
now = datetime.datetime.now().timestamp()
# look for the first object found within the last second
# (newest objects are appended to the end)
detected_objects = self._detected_objects.copy()
2019-12-31 21:59:22 +01:00
objects_removed = False
for frame_time in detected_objects.keys():
if now-frame_time>2:
del self._detected_objects[frame_time]
objects_removed = True
2019-03-27 12:17:00 +01:00
2019-12-31 21:59:22 +01:00
if objects_removed:
2019-03-27 12:17:00 +01:00
# notify that parsed objects were changed
with self._objects_parsed:
self._objects_parsed.notify_all()
2019-12-23 13:40:48 +01:00
class DetectedObjectsProcessor(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame = self.camera.detected_objects_queue.get()
objects = frame['detected_objects']
2019-12-31 21:59:22 +01:00
# print(f"Processing objects for: {frame['size']} {frame['x_offset']} {frame['y_offset']}")
# if len(objects) == 0:
# continue
2019-12-23 13:40:48 +01:00
for raw_obj in objects:
obj = {
'name': str(LABELS[raw_obj.label_id]),
2019-12-31 21:59:22 +01:00
'score': float(raw_obj.score),
'box': {
'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
},
'region': {
'xmin': frame['x_offset'],
'ymin': frame['y_offset'],
'xmax': frame['x_offset']+frame['size'],
'ymax': frame['y_offset']+frame['size']
},
2019-12-23 13:40:48 +01:00
'frame_time': frame['frame_time'],
'region_id': frame['region_id']
}
2019-12-31 21:59:22 +01:00
if not obj['name'] == 'bicycle':
continue
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
obj['clipped'] = False
if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
(obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
(self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
(self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
obj['clipped'] = True
2019-12-23 13:40:48 +01:00
# Compute the area
2019-12-31 21:59:22 +01:00
obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
2019-12-23 13:40:48 +01:00
2019-12-31 21:59:22 +01:00
self.camera.detected_objects[frame['frame_time']].append(obj)
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[frame['frame_time']] -= 1
2020-01-02 13:32:02 +01:00
# print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
2019-12-31 21:59:22 +01:00
if self.camera.regions_in_process[frame['frame_time']] == 0:
del self.camera.regions_in_process[frame['frame_time']]
2020-01-02 13:32:02 +01:00
# print(f"{frame['frame_time']} no remaining regions")
2019-12-31 21:59:22 +01:00
self.camera.finished_frame_queue.put(frame['frame_time'])
2019-12-23 13:40:48 +01:00
2019-12-31 21:59:22 +01:00
# Thread that checks finished frames for clipped objects and sends back
# for processing if needed
class RegionRefiner(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame_time = self.camera.finished_frame_queue.get()
detected_objects = self.camera.detected_objects[frame_time].copy()
2019-12-31 21:59:22 +01:00
# print(f"{frame_time} finished")
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
for o in detected_objects]
confidences = [o['score'] for o in detected_objects]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
2019-12-31 21:59:22 +01:00
# print(f"{frame_time} - NMS reduced objects from {len(detected_objects)} to {len(idxs)}")
2019-12-31 21:59:22 +01:00
2020-01-02 14:38:50 +01:00
look_again = False
# get selected objects
selected_objects = []
for index in idxs:
obj = detected_objects[index[0]]
selected_objects.append(obj)
if obj['clipped']:
box = obj['box']
# calculate a new region that will hopefully get the entire object
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
box['xmin'], box['ymin'],
box['xmax'], box['ymax'])
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
2019-12-31 21:59:22 +01:00
with self.camera.regions_in_process_lock:
if not frame_time in self.camera.regions_in_process:
self.camera.regions_in_process[frame_time] = 1
else:
self.camera.regions_in_process[frame_time] += 1
# add it to the queue
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': -1,
'size': size,
'x_offset': x_offset,
'y_offset': y_offset
})
self.camera.dynamic_region_fps.update()
2020-01-02 14:38:50 +01:00
look_again = True
# TODO: zoom in on unclipped low confidence objects
# else: ...
2019-12-31 21:59:22 +01:00
2020-01-02 14:38:50 +01:00
# if we are looking again, then this frame is not ready for processing
if look_again:
# remove the clipped objects
self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
2019-12-31 21:59:22 +01:00
continue
2020-01-02 13:32:02 +01:00
# filter objects based on camera settings
selected_objects = [o for o in selected_objects if not self.filtered(o)]
2020-01-02 14:38:50 +01:00
self.camera.detected_objects[frame_time] = selected_objects
2020-01-02 14:38:50 +01:00
with self.camera.objects_parsed:
self.camera.objects_parsed.notify_all()
2019-12-31 21:59:22 +01:00
# print(f"{frame_time} is actually finished")
# keep adding frames to the refined queue as long as they are finished
with self.camera.regions_in_process_lock:
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
2020-01-02 14:38:50 +01:00
self.camera.last_processed_frame = self.camera.frame_queue.get()
self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
def filtered(self, obj):
object_name = obj['name']
if object_name in self.camera.object_filters:
obj_settings = self.camera.object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
return True
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj['ymax']), len(self.camera.mask)-1)
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.camera.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if self.camera.mask[y_location][x_location] == [0]:
return True
return False
2019-12-31 21:59:22 +01:00
2020-01-02 13:32:02 +01:00
def has_overlap(self, new_obj, obj, overlap=.7):
2019-12-31 21:59:22 +01:00
# compute intersection rectangle with existing object and new objects region
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
# compute intersection rectangle with new object and existing objects region
new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
# compute iou for the two intersection rectangles that were just computed
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
# if intersection is greater than overlap
if iou > overlap:
return True
else:
return False
def find_group(self, new_obj, groups):
for index, group in enumerate(groups):
for obj in group:
if self.has_overlap(new_obj, obj):
return index
return None
class ObjectTracker(threading.Thread):
def __init__(self, camera, max_disappeared):
threading.Thread.__init__(self)
self.camera = camera
self.tracked_objects = {}
self.disappeared = {}
self.max_disappeared = max_disappeared
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
# TODO: track objects
frame_time = self.camera.refined_frame_queue.get()
2020-01-02 14:38:50 +01:00
# f = open(f"/debug/{str(frame_time)}.jpg", 'wb')
# f.write(self.camera.frame_with_objects(frame_time))
# f.close()
2019-12-31 21:59:22 +01:00
def register(self, index, obj):
id = f"{str(obj.frame_time)}-{index}"
self.tracked_objects[id] = obj
self.disappeared[id] = 0
def deregister(self, id):
del self.disappeared[id]
del self.tracked_objects[id]
def update(self, id, new_obj):
new_obj.detections = self.tracked_objects[id].detections
new_obj.detections.append({
})
def match_and_update(self, new_objects):
# check to see if the list of input bounding box rectangles
# is empty
if len(new_objects) == 0:
# loop over any existing tracked objects and mark them
# as disappeared
for objectID in list(self.disappeared.keys()):
self.disappeared[objectID] += 1
# if we have reached a maximum number of consecutive
# frames where a given object has been marked as
# missing, deregister it
if self.disappeared[objectID] > self.max_disappeared:
self.deregister(objectID)
# return early as there are no centroids or tracking info
# to update
return
# compute centroids
for obj in new_objects:
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
obj.centroid = (centroid_x, centroid_y)
if len(self.tracked_objects) == 0:
for index, obj in enumerate(new_objects):
self.register(index, obj)
return
new_centroids = np.array([o.centroid for o in new_objects])
current_ids = list(self.tracked_objects.keys())
current_centroids = np.array([o.centroid for o in self.tracked_objects])
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each new centroid to an existing
# object centroid
D = dist.cdist(current_centroids, new_centroids)
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value is at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
# val
if row in usedRows or col in usedCols:
continue
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
objectID = current_ids[row]
self.update(objectID, new_objects[col])
self.disappeared[objectID] = 0
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
# compute both the row and column index we have NOT yet
# examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# in the event that the number of object centroids is
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
if D.shape[0] >= D.shape[1]:
# loop over the unused row indexes
for row in unusedRows:
# grab the object ID for the corresponding row
# index and increment the disappeared counter
objectID = current_ids[row]
self.disappeared[objectID] += 1
# check to see if the number of consecutive
# frames the object has been marked "disappeared"
# for warrants deregistering the object
if self.disappeared[objectID] > self.max_disappeared:
self.deregister(objectID)
# otherwise, if the number of input centroids is greater
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
else:
for col in unusedCols:
self.register(col, new_objects[col])
# -------------
# # initialize an array of input centroids for the current frame
# inputCentroids = np.zeros((len(rects), 2), dtype="int")
# # loop over the bounding box rectangles
# for (i, (startX, startY, endX, endY)) in enumerate(rects):
# # use the bounding box coordinates to derive the centroid
# cX = int((startX + endX) / 2.0)
# cY = int((startY + endY) / 2.0)
# inputCentroids[i] = (cX, cY)
# # if we are currently not tracking any objects take the input
# # centroids and register each of them
# if len(self.objects) == 0:
# for i in range(0, len(inputCentroids)):
# self.register(inputCentroids[i])
# # otherwise, are are currently tracking objects so we need to
# # try to match the input centroids to existing object
# # centroids
# else:
# # grab the set of object IDs and corresponding centroids
# objectIDs = list(self.objects.keys())
# objectCentroids = list(self.objects.values())
# # compute the distance between each pair of object
# # centroids and input centroids, respectively -- our
# # goal will be to match an input centroid to an existing
# # object centroid
# D = dist.cdist(np.array(objectCentroids), inputCentroids)
# # in order to perform this matching we must (1) find the
# # smallest value in each row and then (2) sort the row
# # indexes based on their minimum values so that the row
# # with the smallest value is at the *front* of the index
# # list
# rows = D.min(axis=1).argsort()
# # next, we perform a similar process on the columns by
# # finding the smallest value in each column and then
# # sorting using the previously computed row index list
# cols = D.argmin(axis=1)[rows]
# # in order to determine if we need to update, register,
# # or deregister an object we need to keep track of which
# # of the rows and column indexes we have already examined
# usedRows = set()
# usedCols = set()
# # loop over the combination of the (row, column) index
# # tuples
# for (row, col) in zip(rows, cols):
# # if we have already examined either the row or
# # column value before, ignore it
# # val
# if row in usedRows or col in usedCols:
# continue
# # otherwise, grab the object ID for the current row,
# # set its new centroid, and reset the disappeared
# # counter
# objectID = objectIDs[row]
# self.objects[objectID] = inputCentroids[col]
# self.disappeared[objectID] = 0
# # indicate that we have examined each of the row and
# # column indexes, respectively
# usedRows.add(row)
# usedCols.add(col)
# # compute both the row and column index we have NOT yet
# # examined
# unusedRows = set(range(0, D.shape[0])).difference(usedRows)
# unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# # in the event that the number of object centroids is
# # equal or greater than the number of input centroids
# # we need to check and see if some of these objects have
# # potentially disappeared
# if D.shape[0] >= D.shape[1]:
# # loop over the unused row indexes
# for row in unusedRows:
# # grab the object ID for the corresponding row
# # index and increment the disappeared counter
# objectID = objectIDs[row]
# self.disappeared[objectID] += 1
# # check to see if the number of consecutive
# # frames the object has been marked "disappeared"
# # for warrants deregistering the object
# if self.disappeared[objectID] > self.maxDisappeared:
# self.deregister(objectID)
# # otherwise, if the number of input centroids is greater
# # than the number of existing object centroids we need to
# # register each new input centroid as a trackable object
# else:
# for col in unusedCols:
# self.register(inputCentroids[col])
# # return the set of trackable objects
# return self.objects
# Maintains the frame and object with the highest score
class BestFrames(threading.Thread):
2019-03-27 12:17:00 +01:00
def __init__(self, objects_parsed, recent_frames, detected_objects):
threading.Thread.__init__(self)
self.objects_parsed = objects_parsed
self.recent_frames = recent_frames
self.detected_objects = detected_objects
self.best_objects = {}
self.best_frames = {}
def run(self):
prctl.set_name("BestFrames")
while True:
2019-03-27 12:17:00 +01:00
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
2019-03-27 12:17:00 +01:00
# make a copy of detected objects
detected_objects = self.detected_objects.copy()
2019-12-31 21:59:22 +01:00
for obj in itertools.chain.from_iterable(detected_objects.values()):
if obj['name'] in self.best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
self.best_objects[obj['name']] = obj
else:
self.best_objects[obj['name']] = obj
2019-03-30 13:58:31 +01:00
# make a copy of the recent frames
recent_frames = self.recent_frames.copy()
2019-03-27 12:17:00 +01:00
for name, obj in self.best_objects.items():
if obj['frame_time'] in recent_frames:
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
2019-12-31 21:59:22 +01:00
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']}")
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
self.best_frames[name] = best_frame