blakeblackshear.frigate/frigate/detectors/plugins/rknn.py

123 lines
3.5 KiB
Python
Raw Normal View History

import logging
from typing import Literal
import cv2
import cv2.dnn
import numpy as np
try:
from hide_warnings import hide_warnings
except: # noqa: E722
def hide_warnings(func):
pass
from pydantic import Field
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
logger = logging.getLogger(__name__)
DETECTOR_KEY = "rknn"
class RknnDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
score_thresh: float = Field(
default=0.5, ge=0, le=1, title="Minimal confidence for detection."
)
nms_thresh: float = Field(
default=0.45, ge=0, le=1, title="IoU threshold for non-maximum suppression."
)
class Rknn(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, config: RknnDetectorConfig):
self.height = config.model.height
self.width = config.model.width
self.score_thresh = config.score_thresh
self.nms_thresh = config.nms_thresh
self.model_path = config.model.path or "/models/yolov8n-320x320.rknn"
from rknnlite.api import RKNNLite
self.rknn = RKNNLite(verbose=False)
if self.rknn.load_rknn(self.model_path) != 0:
logger.error("Error initializing rknn model.")
if self.rknn.init_runtime() != 0:
logger.error("Error initializing rknn runtime.")
def __del__(self):
self.rknn.release()
def postprocess(self, results):
"""
Processes yolov8 output.
Args:
results: array with shape: (1, 84, n, 1) where n depends on yolov8 model size (for 320x320 model n=2100)
Returns:
detections: array with shape (20, 6) with 20 rows of (class, confidence, y_min, x_min, y_max, x_max)
"""
results = np.transpose(results[0, :, :, 0]) # array shape (2100, 84)
classes = np.argmax(
results[:, 4:], axis=1
) # array shape (2100,); index of class with max confidence of each row
scores = np.max(
results[:, 4:], axis=1
) # array shape (2100,); max confidence of each row
# array shape (2100, 4); bounding box of each row
boxes = np.transpose(
np.vstack(
(
results[:, 0] - 0.5 * results[:, 2],
results[:, 1] - 0.5 * results[:, 3],
results[:, 2],
results[:, 3],
)
)
)
# indices of rows with confidence > SCORE_THRESH with Non-maximum Suppression (NMS)
result_boxes = cv2.dnn.NMSBoxes(
boxes, scores, self.score_thresh, self.nms_thresh, 0.5
)
detections = np.zeros((20, 6), np.float32)
for i in range(len(result_boxes)):
if i >= 20:
break
index = result_boxes[i]
detections[i] = [
classes[index],
scores[index],
(boxes[index][1]) / self.height,
(boxes[index][0]) / self.width,
(boxes[index][1] + boxes[index][3]) / self.height,
(boxes[index][0] + boxes[index][2]) / self.width,
]
return detections
@hide_warnings
def inference(self, tensor_input):
return self.rknn.inference(inputs=tensor_input)
def detect_raw(self, tensor_input):
output = self.inference(
[
tensor_input,
]
)
return self.postprocess(output[0])