2020-02-09 14:39:24 +01:00
|
|
|
import cv2
|
|
|
|
import imutils
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
class MotionDetector():
|
2020-02-16 04:07:54 +01:00
|
|
|
def __init__(self, frame_shape, mask, resize_factor=4):
|
2020-02-09 14:39:24 +01:00
|
|
|
self.resize_factor = resize_factor
|
|
|
|
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
|
|
|
|
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
|
|
|
|
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
|
|
|
|
self.motion_frame_count = 0
|
|
|
|
self.frame_counter = 0
|
2020-02-16 04:07:54 +01:00
|
|
|
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
|
|
|
self.mask = np.where(resized_mask==[0])
|
2020-02-09 14:39:24 +01:00
|
|
|
|
|
|
|
def detect(self, frame):
|
|
|
|
motion_boxes = []
|
|
|
|
|
|
|
|
# resize frame
|
|
|
|
resized_frame = cv2.resize(frame, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
|
|
# convert to grayscale
|
|
|
|
gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
# mask frame
|
|
|
|
gray[self.mask] = [255]
|
|
|
|
|
2020-02-09 14:39:24 +01:00
|
|
|
# it takes ~30 frames to establish a baseline
|
|
|
|
# dont bother looking for motion
|
|
|
|
if self.frame_counter < 30:
|
|
|
|
self.frame_counter += 1
|
|
|
|
else:
|
|
|
|
# compare to average
|
|
|
|
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg_frame))
|
|
|
|
|
|
|
|
# compute the average delta over the past few frames
|
|
|
|
# the alpha value can be modified to configure how sensitive the motion detection is.
|
|
|
|
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
|
|
|
# register as motion, too low and a fast moving person wont be detected as motion
|
|
|
|
# this also assumes that a person is in the same location across more than a single frame
|
|
|
|
cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2)
|
|
|
|
|
|
|
|
# compute the threshold image for the current frame
|
|
|
|
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
|
|
|
|
# black out everything in the avg_delta where there isnt motion in the current frame
|
|
|
|
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
|
|
|
|
avg_delta_image[np.where(current_thresh==[0])] = [0]
|
|
|
|
|
|
|
|
# then look for deltas above the threshold, but only in areas where there is a delta
|
|
|
|
# in the current frame. this prevents deltas from previous frames from being included
|
|
|
|
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
|
|
|
|
# dilate the thresholded image to fill in holes, then find contours
|
|
|
|
# on thresholded image
|
|
|
|
thresh = cv2.dilate(thresh, None, iterations=2)
|
|
|
|
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
cnts = imutils.grab_contours(cnts)
|
|
|
|
|
|
|
|
# loop over the contours
|
|
|
|
for c in cnts:
|
|
|
|
# if the contour is big enough, count it as motion
|
|
|
|
contour_area = cv2.contourArea(c)
|
|
|
|
if contour_area > 100:
|
|
|
|
x, y, w, h = cv2.boundingRect(c)
|
|
|
|
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
|
|
|
|
|
|
|
|
if len(motion_boxes) > 0:
|
|
|
|
self.motion_frame_count += 1
|
|
|
|
# TODO: this really depends on FPS
|
|
|
|
if self.motion_frame_count >= 10:
|
|
|
|
# only average in the current frame if the difference persists for at least 3 frames
|
|
|
|
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
|
|
|
|
else:
|
|
|
|
# when no motion, just keep averaging the frames together
|
|
|
|
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
|
|
|
|
self.motion_frame_count = 0
|
|
|
|
|
|
|
|
return motion_boxes
|