blakeblackshear.frigate/frigate/object_processing.py

278 lines
14 KiB
Python
Raw Normal View History

2020-02-16 04:07:54 +01:00
import json
import hashlib
import datetime
import time
2020-02-16 04:07:54 +01:00
import copy
import cv2
import threading
2020-08-02 15:46:36 +02:00
import queue
2020-02-16 04:07:54 +01:00
import numpy as np
from collections import Counter, defaultdict
import itertools
import pyarrow.plasma as plasma
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label, PlasmaManager
2020-02-16 15:49:43 +01:00
from frigate.edgetpu import load_labels
2020-02-16 04:07:54 +01:00
2020-02-18 12:55:06 +01:00
PATH_TO_LABELS = '/labelmap.txt'
2020-02-16 04:07:54 +01:00
2020-02-16 15:49:43 +01:00
LABELS = load_labels(PATH_TO_LABELS)
2020-02-16 04:07:54 +01:00
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
def filter_false_positives(event):
if len(event['history']) < 2:
return True
return False
2020-07-25 14:44:07 +02:00
def zone_filtered(obj, object_config):
object_name = obj['label']
object_filters = object_config.get('filters', {})
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
return True
return False
2020-02-16 04:07:54 +01:00
class TrackedObjectProcessor(threading.Thread):
2020-08-02 15:46:36 +02:00
def __init__(self, camera_config, zone_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
2020-02-16 04:07:54 +01:00
threading.Thread.__init__(self)
2020-07-25 14:44:07 +02:00
self.camera_config = camera_config
self.zone_config = zone_config
2020-02-16 04:07:54 +01:00
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
2020-07-09 13:57:16 +02:00
self.event_queue = event_queue
2020-08-02 15:46:36 +02:00
self.stop_event = stop_event
2020-02-16 04:07:54 +01:00
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {},
'current_frame': np.zeros((720,1280,3), np.uint8),
'current_frame_time': 0.0,
'object_id': None
2020-02-16 04:07:54 +01:00
})
2020-07-25 14:44:07 +02:00
self.zone_data = defaultdict(lambda: {
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'contours': {}
})
# create zone contours
for name, config in zone_config.items():
for camera, camera_zone_config in config.items():
coordinates = camera_zone_config['coordinates']
if isinstance(coordinates, list):
self.zone_data[name]['contours'][camera] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
elif isinstance(coordinates, str):
points = coordinates.split(',')
self.zone_data[name]['contours'][camera] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
else:
print(f"Unable to parse zone coordinates for {name} - {camera}")
# set colors for zones
colors = plt.cm.get_cmap('tab10', len(self.zone_data.keys()))
for i, zone in enumerate(self.zone_data.values()):
zone['color'] = tuple(int(round(255 * c)) for c in colors(i)[:3])
2020-08-02 15:46:36 +02:00
self.plasma_client = PlasmaManager(self.stop_event)
2020-02-16 04:07:54 +01:00
def get_best(self, camera, label):
if label in self.camera_data[camera]['best_objects']:
return self.camera_data[camera]['best_objects'][label]['frame']
else:
return None
def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame']
2020-02-16 04:07:54 +01:00
def run(self):
while True:
2020-08-02 15:46:36 +02:00
if self.stop_event.is_set():
2020-08-08 14:39:57 +02:00
print(f"Exiting object processor...")
2020-08-02 15:46:36 +02:00
break
try:
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
2020-07-25 14:44:07 +02:00
camera_config = self.camera_config[camera]
best_objects = self.camera_data[camera]['best_objects']
current_object_status = self.camera_data[camera]['object_status']
2020-07-09 13:57:16 +02:00
tracked_objects = self.camera_data[camera]['tracked_objects']
current_ids = current_tracked_objects.keys()
previous_ids = tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
# only register the object here if we are sure it isnt a false positive
if not filter_false_positives(current_tracked_objects[id]):
tracked_objects[id] = current_tracked_objects[id]
# publish events to mqtt
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(tracked_objects[id]), retain=False)
self.event_queue.put(('start', camera, tracked_objects[id]))
2020-07-09 13:57:16 +02:00
for id in updated_ids:
tracked_objects[id] = current_tracked_objects[id]
for id in removed_ids:
# publish events to mqtt
tracked_objects[id]['end_time'] = frame_time
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(tracked_objects[id]), retain=False)
self.event_queue.put(('end', camera, tracked_objects[id]))
del tracked_objects[id]
self.camera_data[camera]['current_frame_time'] = frame_time
2020-07-25 14:44:07 +02:00
# build a dict of objects in each zone for current camera
current_objects_in_zones = defaultdict(lambda: [])
for obj in tracked_objects.values():
bottom_center = (obj['centroid'][0], obj['box'][3])
# check each zone
for name, zone in self.zone_data.items():
2020-08-04 01:03:45 +02:00
current_contour = zone['contours'].get(camera, None)
# if the current camera does not have a contour for this zone, skip
if current_contour is None:
continue
# check if the object is in the zone and not filtered
if (cv2.pointPolygonTest(current_contour, bottom_center, False) >= 0
and not zone_filtered(obj, self.zone_config[name][camera].get('filters', {}))):
current_objects_in_zones[name].append(obj['label'])
2020-07-25 14:44:07 +02:00
###
# Draw tracked objects on the frame
###
current_frame = self.plasma_client.get(f"{camera}{frame_time}")
if not current_frame is plasma.ObjectNotAvailable:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
2020-07-25 14:44:07 +02:00
if camera_config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
2020-02-16 04:07:54 +01:00
2020-07-25 14:44:07 +02:00
if camera_config['snapshots']['draw_zones']:
for name, zone in self.zone_data.items():
thickness = 2 if len(current_objects_in_zones[name]) == 0 else 8
if camera in zone['contours']:
cv2.drawContours(current_frame, [zone['contours'][camera]], -1, zone['color'], thickness)
###
# Set the current frame
###
self.camera_data[camera]['current_frame'] = current_frame
# delete the previous frame from the plasma store and update the object id
if not self.camera_data[camera]['object_id'] is None:
self.plasma_client.delete(self.camera_data[camera]['object_id'])
self.camera_data[camera]['object_id'] = f"{camera}{frame_time}"
###
# Maintain the highest scoring recent object and frame for each label
###
for obj in tracked_objects.values():
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != frame_time:
continue
if obj['label'] in best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
2020-07-26 14:36:30 +02:00
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
else:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
2020-02-16 04:07:54 +01:00
###
# Report over MQTT
###
2020-08-02 15:46:36 +02:00
2020-07-25 14:44:07 +02:00
# get the zones that are relevant for this camera
relevant_zones = [zone for zone, config in self.zone_config.items() if camera in config]
for zone in relevant_zones:
# create the set of labels in the current frame and previously reported
labels_for_zone = set(current_objects_in_zones[zone] + list(self.zone_data[zone]['object_status'][camera].keys()))
# for each label
for label in labels_for_zone:
# compute the current 'ON' vs 'OFF' status by checking if any camera sees the object in the zone
2020-08-04 01:03:45 +02:00
previous_state = any([c[label] == 'ON' for c in self.zone_data[zone]['object_status'].values()])
2020-07-25 14:44:07 +02:00
self.zone_data[zone]['object_status'][camera][label] = 'ON' if label in current_objects_in_zones[zone] else 'OFF'
2020-08-04 01:03:45 +02:00
new_state = any([c[label] == 'ON' for c in self.zone_data[zone]['object_status'].values()])
2020-07-25 14:44:07 +02:00
# if the value is changing, send over MQTT
if previous_state == False and new_state == True:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
elif previous_state == True and new_state == False:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
# count by type
obj_counter = Counter()
for obj in tracked_objects.values():
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
# send the best snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)