mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
175 lines
6.2 KiB
Python
175 lines
6.2 KiB
Python
|
import logging
|
||
|
import os
|
||
|
import warnings
|
||
|
from io import BytesIO
|
||
|
from typing import Callable, Dict, List, Optional, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import onnxruntime as ort
|
||
|
import requests
|
||
|
from PIL import Image
|
||
|
|
||
|
# importing this without pytorch or others causes a warning
|
||
|
# https://github.com/huggingface/transformers/issues/27214
|
||
|
# suppressed by setting env TRANSFORMERS_NO_ADVISORY_WARNINGS=1
|
||
|
from transformers import AutoFeatureExtractor, AutoTokenizer
|
||
|
from transformers.utils.logging import disable_progress_bar
|
||
|
|
||
|
from frigate.const import MODEL_CACHE_DIR, UPDATE_MODEL_STATE
|
||
|
from frigate.types import ModelStatusTypesEnum
|
||
|
from frigate.util.downloader import ModelDownloader
|
||
|
|
||
|
warnings.filterwarnings(
|
||
|
"ignore",
|
||
|
category=FutureWarning,
|
||
|
message="The class CLIPFeatureExtractor is deprecated",
|
||
|
)
|
||
|
|
||
|
# disables the progress bar for downloading tokenizers and feature extractors
|
||
|
disable_progress_bar()
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class GenericONNXEmbedding:
|
||
|
"""Generic embedding function for ONNX models (text and vision)."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_name: str,
|
||
|
model_file: str,
|
||
|
download_urls: Dict[str, str],
|
||
|
embedding_function: Callable[[List[np.ndarray]], np.ndarray],
|
||
|
model_type: str,
|
||
|
preferred_providers: List[str] = ["CPUExecutionProvider"],
|
||
|
tokenizer_file: Optional[str] = None,
|
||
|
):
|
||
|
self.model_name = model_name
|
||
|
self.model_file = model_file
|
||
|
self.tokenizer_file = tokenizer_file
|
||
|
self.download_urls = download_urls
|
||
|
self.embedding_function = embedding_function
|
||
|
self.model_type = model_type # 'text' or 'vision'
|
||
|
self.preferred_providers = preferred_providers
|
||
|
|
||
|
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
||
|
self.tokenizer = None
|
||
|
self.feature_extractor = None
|
||
|
self.session = None
|
||
|
|
||
|
self.downloader = ModelDownloader(
|
||
|
model_name=self.model_name,
|
||
|
download_path=self.download_path,
|
||
|
file_names=list(self.download_urls.keys())
|
||
|
+ ([self.tokenizer_file] if self.tokenizer_file else []),
|
||
|
download_func=self._download_model,
|
||
|
)
|
||
|
self.downloader.ensure_model_files()
|
||
|
|
||
|
def _download_model(self, path: str):
|
||
|
try:
|
||
|
file_name = os.path.basename(path)
|
||
|
if file_name in self.download_urls:
|
||
|
ModelDownloader.download_from_url(self.download_urls[file_name], path)
|
||
|
elif file_name == self.tokenizer_file and self.model_type == "text":
|
||
|
if not os.path.exists(path + "/" + self.model_name):
|
||
|
logger.info(f"Downloading {self.model_name} tokenizer")
|
||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||
|
self.model_name,
|
||
|
trust_remote_code=True,
|
||
|
cache_dir=f"{MODEL_CACHE_DIR}/{self.model_name}/tokenizer",
|
||
|
clean_up_tokenization_spaces=True,
|
||
|
)
|
||
|
tokenizer.save_pretrained(path)
|
||
|
|
||
|
self.downloader.requestor.send_data(
|
||
|
UPDATE_MODEL_STATE,
|
||
|
{
|
||
|
"model": f"{self.model_name}-{file_name}",
|
||
|
"state": ModelStatusTypesEnum.downloaded,
|
||
|
},
|
||
|
)
|
||
|
except Exception:
|
||
|
self.downloader.requestor.send_data(
|
||
|
UPDATE_MODEL_STATE,
|
||
|
{
|
||
|
"model": f"{self.model_name}-{file_name}",
|
||
|
"state": ModelStatusTypesEnum.error,
|
||
|
},
|
||
|
)
|
||
|
|
||
|
def _load_model_and_tokenizer(self):
|
||
|
if self.session is None:
|
||
|
self.downloader.wait_for_download()
|
||
|
if self.model_type == "text":
|
||
|
self.tokenizer = self._load_tokenizer()
|
||
|
else:
|
||
|
self.feature_extractor = self._load_feature_extractor()
|
||
|
self.session = self._load_model(
|
||
|
os.path.join(self.download_path, self.model_file),
|
||
|
self.preferred_providers,
|
||
|
)
|
||
|
|
||
|
def _load_tokenizer(self):
|
||
|
tokenizer_path = os.path.join(f"{MODEL_CACHE_DIR}/{self.model_name}/tokenizer")
|
||
|
return AutoTokenizer.from_pretrained(
|
||
|
self.model_name,
|
||
|
cache_dir=tokenizer_path,
|
||
|
trust_remote_code=True,
|
||
|
clean_up_tokenization_spaces=True,
|
||
|
)
|
||
|
|
||
|
def _load_feature_extractor(self):
|
||
|
return AutoFeatureExtractor.from_pretrained(
|
||
|
f"{MODEL_CACHE_DIR}/{self.model_name}",
|
||
|
)
|
||
|
|
||
|
def _load_model(self, path: str, providers: List[str]):
|
||
|
if os.path.exists(path):
|
||
|
return ort.InferenceSession(path, providers=providers)
|
||
|
else:
|
||
|
logger.warning(f"{self.model_name} model file {path} not found.")
|
||
|
return None
|
||
|
|
||
|
def _process_image(self, image):
|
||
|
if isinstance(image, str):
|
||
|
if image.startswith("http"):
|
||
|
response = requests.get(image)
|
||
|
image = Image.open(BytesIO(response.content)).convert("RGB")
|
||
|
|
||
|
return image
|
||
|
|
||
|
def __call__(
|
||
|
self, inputs: Union[List[str], List[Image.Image], List[str]]
|
||
|
) -> List[np.ndarray]:
|
||
|
self._load_model_and_tokenizer()
|
||
|
|
||
|
if self.session is None or (
|
||
|
self.tokenizer is None and self.feature_extractor is None
|
||
|
):
|
||
|
logger.error(
|
||
|
f"{self.model_name} model or tokenizer/feature extractor is not loaded."
|
||
|
)
|
||
|
return []
|
||
|
|
||
|
if self.model_type == "text":
|
||
|
processed_inputs = self.tokenizer(
|
||
|
inputs, padding=True, truncation=True, return_tensors="np"
|
||
|
)
|
||
|
else:
|
||
|
processed_images = [self._process_image(img) for img in inputs]
|
||
|
processed_inputs = self.feature_extractor(
|
||
|
images=processed_images, return_tensors="np"
|
||
|
)
|
||
|
|
||
|
input_names = [input.name for input in self.session.get_inputs()]
|
||
|
onnx_inputs = {
|
||
|
name: processed_inputs[name]
|
||
|
for name in input_names
|
||
|
if name in processed_inputs
|
||
|
}
|
||
|
|
||
|
outputs = self.session.run(None, onnx_inputs)
|
||
|
embeddings = self.embedding_function(outputs)
|
||
|
|
||
|
return [embedding for embedding in embeddings]
|