2023-05-29 12:31:17 +02:00
|
|
|
import ctypes
|
2022-12-30 17:53:17 +01:00
|
|
|
import logging
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
try:
|
|
|
|
import tensorrt as trt
|
|
|
|
from cuda import cuda
|
|
|
|
|
|
|
|
TRT_SUPPORT = True
|
2023-05-29 12:31:17 +02:00
|
|
|
except ModuleNotFoundError:
|
2022-12-30 17:53:17 +01:00
|
|
|
TRT_SUPPORT = False
|
|
|
|
|
2023-05-29 12:31:17 +02:00
|
|
|
from pydantic import Field
|
|
|
|
from typing_extensions import Literal
|
|
|
|
|
2022-12-30 17:53:17 +01:00
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
|
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
DETECTOR_KEY = "tensorrt"
|
|
|
|
|
|
|
|
if TRT_SUPPORT:
|
|
|
|
|
|
|
|
class TrtLogger(trt.ILogger):
|
|
|
|
def __init__(self):
|
|
|
|
trt.ILogger.__init__(self)
|
|
|
|
|
|
|
|
def log(self, severity, msg):
|
|
|
|
logger.log(self.getSeverity(severity), msg)
|
|
|
|
|
|
|
|
def getSeverity(self, sev: trt.ILogger.Severity) -> int:
|
|
|
|
if sev == trt.ILogger.VERBOSE:
|
|
|
|
return logging.DEBUG
|
|
|
|
elif sev == trt.ILogger.INFO:
|
|
|
|
return logging.INFO
|
|
|
|
elif sev == trt.ILogger.WARNING:
|
|
|
|
return logging.WARNING
|
|
|
|
elif sev == trt.ILogger.ERROR:
|
|
|
|
return logging.ERROR
|
|
|
|
elif sev == trt.ILogger.INTERNAL_ERROR:
|
|
|
|
return logging.CRITICAL
|
|
|
|
else:
|
|
|
|
return logging.DEBUG
|
|
|
|
|
|
|
|
|
|
|
|
class TensorRTDetectorConfig(BaseDetectorConfig):
|
|
|
|
type: Literal[DETECTOR_KEY]
|
|
|
|
device: int = Field(default=0, title="GPU Device Index")
|
|
|
|
|
|
|
|
|
|
|
|
class HostDeviceMem(object):
|
|
|
|
"""Simple helper data class that's a little nicer to use than a 2-tuple."""
|
|
|
|
|
|
|
|
def __init__(self, host_mem, device_mem, nbytes, size):
|
|
|
|
self.host = host_mem
|
|
|
|
err, self.host_dev = cuda.cuMemHostGetDevicePointer(self.host, 0)
|
|
|
|
self.device = device_mem
|
|
|
|
self.nbytes = nbytes
|
|
|
|
self.size = size
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return self.__str__()
|
|
|
|
|
|
|
|
def __del__(self):
|
|
|
|
cuda.cuMemFreeHost(self.host)
|
|
|
|
cuda.cuMemFree(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
class TensorRtDetector(DetectionApi):
|
|
|
|
type_key = DETECTOR_KEY
|
|
|
|
|
|
|
|
def _load_engine(self, model_path):
|
|
|
|
try:
|
|
|
|
trt.init_libnvinfer_plugins(self.trt_logger, "")
|
|
|
|
|
2023-07-06 21:20:33 +02:00
|
|
|
ctypes.cdll.LoadLibrary("/usr/local/lib/libyolo_layer.so")
|
2022-12-30 17:53:17 +01:00
|
|
|
except OSError as e:
|
|
|
|
logger.error(
|
|
|
|
"ERROR: failed to load libraries. %s",
|
|
|
|
e,
|
|
|
|
)
|
|
|
|
|
|
|
|
with open(model_path, "rb") as f, trt.Runtime(self.trt_logger) as runtime:
|
|
|
|
return runtime.deserialize_cuda_engine(f.read())
|
|
|
|
|
|
|
|
def _get_input_shape(self):
|
|
|
|
"""Get input shape of the TensorRT YOLO engine."""
|
|
|
|
binding = self.engine[0]
|
|
|
|
assert self.engine.binding_is_input(binding)
|
|
|
|
binding_dims = self.engine.get_binding_shape(binding)
|
|
|
|
if len(binding_dims) == 4:
|
|
|
|
return (
|
|
|
|
tuple(binding_dims[2:]),
|
|
|
|
trt.nptype(self.engine.get_binding_dtype(binding)),
|
|
|
|
)
|
|
|
|
elif len(binding_dims) == 3:
|
|
|
|
return (
|
|
|
|
tuple(binding_dims[1:]),
|
|
|
|
trt.nptype(self.engine.get_binding_dtype(binding)),
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"bad dims of binding %s: %s" % (binding, str(binding_dims))
|
|
|
|
)
|
|
|
|
|
|
|
|
def _allocate_buffers(self):
|
|
|
|
"""Allocates all host/device in/out buffers required for an engine."""
|
|
|
|
inputs = []
|
|
|
|
outputs = []
|
|
|
|
bindings = []
|
|
|
|
output_idx = 0
|
|
|
|
for binding in self.engine:
|
|
|
|
binding_dims = self.engine.get_binding_shape(binding)
|
|
|
|
if len(binding_dims) == 4:
|
|
|
|
# explicit batch case (TensorRT 7+)
|
|
|
|
size = trt.volume(binding_dims)
|
|
|
|
elif len(binding_dims) == 3:
|
|
|
|
# implicit batch case (TensorRT 6 or older)
|
|
|
|
size = trt.volume(binding_dims) * self.engine.max_batch_size
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"bad dims of binding %s: %s" % (binding, str(binding_dims))
|
|
|
|
)
|
|
|
|
nbytes = size * self.engine.get_binding_dtype(binding).itemsize
|
|
|
|
# Allocate host and device buffers
|
|
|
|
err, host_mem = cuda.cuMemHostAlloc(
|
|
|
|
nbytes, Flags=cuda.CU_MEMHOSTALLOC_DEVICEMAP
|
|
|
|
)
|
|
|
|
assert err is cuda.CUresult.CUDA_SUCCESS, f"cuMemAllocHost returned {err}"
|
|
|
|
logger.debug(
|
|
|
|
f"Allocated Tensor Binding {binding} Memory {nbytes} Bytes ({size} * {self.engine.get_binding_dtype(binding)})"
|
|
|
|
)
|
|
|
|
err, device_mem = cuda.cuMemAlloc(nbytes)
|
|
|
|
assert err is cuda.CUresult.CUDA_SUCCESS, f"cuMemAlloc returned {err}"
|
|
|
|
# Append the device buffer to device bindings.
|
|
|
|
bindings.append(int(device_mem))
|
|
|
|
# Append to the appropriate list.
|
|
|
|
if self.engine.binding_is_input(binding):
|
|
|
|
logger.debug(f"Input has Shape {binding_dims}")
|
|
|
|
inputs.append(HostDeviceMem(host_mem, device_mem, nbytes, size))
|
|
|
|
else:
|
|
|
|
# each grid has 3 anchors, each anchor generates a detection
|
|
|
|
# output of 7 float32 values
|
|
|
|
assert size % 7 == 0, f"output size was {size}"
|
|
|
|
logger.debug(f"Output has Shape {binding_dims}")
|
|
|
|
outputs.append(HostDeviceMem(host_mem, device_mem, nbytes, size))
|
|
|
|
output_idx += 1
|
|
|
|
assert len(inputs) == 1, f"inputs len was {len(inputs)}"
|
|
|
|
assert len(outputs) == 1, f"output len was {len(outputs)}"
|
|
|
|
return inputs, outputs, bindings
|
|
|
|
|
|
|
|
def _do_inference(self):
|
|
|
|
"""do_inference (for TensorRT 7.0+)
|
|
|
|
This function is generalized for multiple inputs/outputs for full
|
|
|
|
dimension networks.
|
|
|
|
Inputs and outputs are expected to be lists of HostDeviceMem objects.
|
|
|
|
"""
|
|
|
|
# Push CUDA Context
|
|
|
|
cuda.cuCtxPushCurrent(self.cu_ctx)
|
|
|
|
|
|
|
|
# Transfer input data to the GPU.
|
|
|
|
[
|
|
|
|
cuda.cuMemcpyHtoDAsync(inp.device, inp.host, inp.nbytes, self.stream)
|
|
|
|
for inp in self.inputs
|
|
|
|
]
|
|
|
|
|
|
|
|
# Run inference.
|
|
|
|
if not self.context.execute_async_v2(
|
|
|
|
bindings=self.bindings, stream_handle=self.stream
|
|
|
|
):
|
2023-05-29 12:31:17 +02:00
|
|
|
logger.warn("Execute returned false")
|
2022-12-30 17:53:17 +01:00
|
|
|
|
|
|
|
# Transfer predictions back from the GPU.
|
|
|
|
[
|
|
|
|
cuda.cuMemcpyDtoHAsync(out.host, out.device, out.nbytes, self.stream)
|
|
|
|
for out in self.outputs
|
|
|
|
]
|
|
|
|
|
|
|
|
# Synchronize the stream
|
|
|
|
cuda.cuStreamSynchronize(self.stream)
|
|
|
|
|
|
|
|
# Pop CUDA Context
|
|
|
|
cuda.cuCtxPopCurrent()
|
|
|
|
|
|
|
|
# Return only the host outputs.
|
|
|
|
return [
|
|
|
|
np.array(
|
|
|
|
(ctypes.c_float * out.size).from_address(out.host), dtype=np.float32
|
|
|
|
)
|
|
|
|
for out in self.outputs
|
|
|
|
]
|
|
|
|
|
|
|
|
def __init__(self, detector_config: TensorRTDetectorConfig):
|
|
|
|
assert (
|
|
|
|
TRT_SUPPORT
|
|
|
|
), f"TensorRT libraries not found, {DETECTOR_KEY} detector not present"
|
|
|
|
|
|
|
|
(cuda_err,) = cuda.cuInit(0)
|
|
|
|
assert (
|
|
|
|
cuda_err == cuda.CUresult.CUDA_SUCCESS
|
|
|
|
), f"Failed to initialize cuda {cuda_err}"
|
|
|
|
err, dev_count = cuda.cuDeviceGetCount()
|
|
|
|
logger.debug(f"Num Available Devices: {dev_count}")
|
|
|
|
assert (
|
|
|
|
detector_config.device < dev_count
|
|
|
|
), f"Invalid TensorRT Device Config. Device {detector_config.device} Invalid."
|
|
|
|
err, self.cu_ctx = cuda.cuCtxCreate(
|
|
|
|
cuda.CUctx_flags.CU_CTX_MAP_HOST, detector_config.device
|
|
|
|
)
|
|
|
|
|
|
|
|
self.conf_th = 0.4 ##TODO: model config parameter
|
|
|
|
self.nms_threshold = 0.4
|
|
|
|
err, self.stream = cuda.cuStreamCreate(0)
|
|
|
|
self.trt_logger = TrtLogger()
|
|
|
|
self.engine = self._load_engine(detector_config.model.path)
|
|
|
|
self.input_shape = self._get_input_shape()
|
|
|
|
|
|
|
|
try:
|
|
|
|
self.context = self.engine.create_execution_context()
|
|
|
|
(
|
|
|
|
self.inputs,
|
|
|
|
self.outputs,
|
|
|
|
self.bindings,
|
|
|
|
) = self._allocate_buffers()
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(e)
|
|
|
|
raise RuntimeError("fail to allocate CUDA resources") from e
|
|
|
|
|
|
|
|
logger.debug("TensorRT loaded. Input shape is %s", self.input_shape)
|
|
|
|
logger.debug("TensorRT version is %s", trt.__version__[0])
|
|
|
|
|
|
|
|
def __del__(self):
|
|
|
|
"""Free CUDA memories."""
|
|
|
|
if self.outputs is not None:
|
|
|
|
del self.outputs
|
|
|
|
if self.inputs is not None:
|
|
|
|
del self.inputs
|
|
|
|
if self.stream is not None:
|
|
|
|
cuda.cuStreamDestroy(self.stream)
|
|
|
|
del self.stream
|
|
|
|
del self.engine
|
|
|
|
del self.context
|
|
|
|
del self.trt_logger
|
|
|
|
cuda.cuCtxDestroy(self.cu_ctx)
|
|
|
|
|
|
|
|
def _postprocess_yolo(self, trt_outputs, conf_th):
|
|
|
|
"""Postprocess TensorRT outputs.
|
|
|
|
# Args
|
|
|
|
trt_outputs: a list of 2 or 3 tensors, where each tensor
|
|
|
|
contains a multiple of 7 float32 numbers in
|
|
|
|
the order of [x, y, w, h, box_confidence, class_id, class_prob]
|
|
|
|
conf_th: confidence threshold
|
|
|
|
# Returns
|
|
|
|
boxes, scores, classes
|
|
|
|
"""
|
|
|
|
# filter low-conf detections and concatenate results of all yolo layers
|
|
|
|
detections = []
|
|
|
|
for o in trt_outputs:
|
|
|
|
dets = o.reshape((-1, 7))
|
|
|
|
dets = dets[dets[:, 4] * dets[:, 6] >= conf_th]
|
|
|
|
detections.append(dets)
|
|
|
|
detections = np.concatenate(detections, axis=0)
|
|
|
|
|
|
|
|
return detections
|
|
|
|
|
|
|
|
def detect_raw(self, tensor_input):
|
|
|
|
# Input tensor has the shape of the [height, width, 3]
|
|
|
|
# Output tensor of float32 of shape [20, 6] where:
|
|
|
|
# O - class id
|
|
|
|
# 1 - score
|
|
|
|
# 2..5 - a value between 0 and 1 of the box: [top, left, bottom, right]
|
|
|
|
|
|
|
|
# normalize
|
|
|
|
if self.input_shape[-1] != trt.int8:
|
|
|
|
tensor_input = tensor_input.astype(self.input_shape[-1])
|
|
|
|
tensor_input /= 255.0
|
|
|
|
|
|
|
|
self.inputs[0].host = np.ascontiguousarray(
|
|
|
|
tensor_input.astype(self.input_shape[-1])
|
|
|
|
)
|
|
|
|
trt_outputs = self._do_inference()
|
|
|
|
|
|
|
|
raw_detections = self._postprocess_yolo(trt_outputs, self.conf_th)
|
|
|
|
|
|
|
|
if len(raw_detections) == 0:
|
|
|
|
return np.zeros((20, 6), np.float32)
|
|
|
|
|
|
|
|
# raw_detections: Nx7 numpy arrays of
|
|
|
|
# [[x, y, w, h, box_confidence, class_id, class_prob],
|
|
|
|
|
|
|
|
# Calculate score as box_confidence x class_prob
|
|
|
|
raw_detections[:, 4] = raw_detections[:, 4] * raw_detections[:, 6]
|
|
|
|
# Reorder elements by the score, best on top, remove class_prob
|
|
|
|
ordered = raw_detections[raw_detections[:, 4].argsort()[::-1]][:, 0:6]
|
|
|
|
# transform width to right with clamp to 0..1
|
|
|
|
ordered[:, 2] = np.clip(ordered[:, 2] + ordered[:, 0], 0, 1)
|
|
|
|
# transform height to bottom with clamp to 0..1
|
|
|
|
ordered[:, 3] = np.clip(ordered[:, 3] + ordered[:, 1], 0, 1)
|
|
|
|
# put result into the correct order and limit to top 20
|
|
|
|
detections = ordered[:, [5, 4, 1, 0, 3, 2]][:20]
|
|
|
|
# pad to 20x6 shape
|
|
|
|
append_cnt = 20 - len(detections)
|
|
|
|
if append_cnt > 0:
|
|
|
|
detections = np.append(
|
|
|
|
detections, np.zeros((append_cnt, 6), np.float32), axis=0
|
|
|
|
)
|
|
|
|
|
|
|
|
return detections
|