mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-07 00:06:57 +01:00
142 lines
5.0 KiB
Python
142 lines
5.0 KiB
Python
|
import os
|
||
|
|
||
|
from flask import (
|
||
|
Flask, Blueprint, jsonify
|
||
|
)
|
||
|
from peewee import SqliteDatabase
|
||
|
from playhouse.shortcuts import model_to_dict
|
||
|
|
||
|
from frigate.models import Event
|
||
|
|
||
|
bp = Blueprint('frigate', __name__)
|
||
|
|
||
|
def create_app(database: SqliteDatabase):
|
||
|
app = Flask(__name__)
|
||
|
|
||
|
@app.before_request
|
||
|
def _db_connect():
|
||
|
database.connect()
|
||
|
|
||
|
@app.teardown_request
|
||
|
def _db_close(exc):
|
||
|
if not database.is_closed():
|
||
|
database.close()
|
||
|
|
||
|
app.register_blueprint(bp)
|
||
|
|
||
|
return app
|
||
|
|
||
|
@bp.route('/')
|
||
|
def is_healthy():
|
||
|
return "Frigate is running. Alive and healthy!"
|
||
|
|
||
|
@bp.route('/events')
|
||
|
def events():
|
||
|
events = Event.select()
|
||
|
return jsonify([model_to_dict(e) for e in events])
|
||
|
|
||
|
# @app.route('/debug/stats')
|
||
|
# def stats():
|
||
|
# stats = {}
|
||
|
|
||
|
# total_detection_fps = 0
|
||
|
|
||
|
# for name, camera_stats in camera_process_info.items():
|
||
|
# total_detection_fps += camera_stats['detection_fps'].value
|
||
|
# stats[name] = {
|
||
|
# 'camera_fps': round(camera_stats['camera_fps'].value, 2),
|
||
|
# 'process_fps': round(camera_stats['process_fps'].value, 2),
|
||
|
# 'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
|
||
|
# 'detection_fps': round(camera_stats['detection_fps'].value, 2),
|
||
|
# 'pid': camera_stats['process'].pid,
|
||
|
# 'capture_pid': camera_stats['capture_process'].pid,
|
||
|
# 'frame_info': {
|
||
|
# 'detect': camera_stats['detection_frame'].value,
|
||
|
# 'process': object_processor.camera_data[name]['current_frame_time']
|
||
|
# }
|
||
|
# }
|
||
|
|
||
|
# stats['detectors'] = {}
|
||
|
# for name, detector in detectors.items():
|
||
|
# stats['detectors'][name] = {
|
||
|
# 'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
|
||
|
# 'detection_start': detector.detection_start.value,
|
||
|
# 'pid': detector.detect_process.pid
|
||
|
# }
|
||
|
# stats['detection_fps'] = round(total_detection_fps, 2)
|
||
|
|
||
|
# return jsonify(stats)
|
||
|
|
||
|
# @app.route('/<camera_name>/<label>/best.jpg')
|
||
|
# def best(camera_name, label):
|
||
|
# if camera_name in CONFIG['cameras']:
|
||
|
# best_object = object_processor.get_best(camera_name, label)
|
||
|
# best_frame = best_object.get('frame')
|
||
|
# if best_frame is None:
|
||
|
# best_frame = np.zeros((720,1280,3), np.uint8)
|
||
|
# else:
|
||
|
# best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
|
||
|
|
||
|
# crop = bool(request.args.get('crop', 0, type=int))
|
||
|
# if crop:
|
||
|
# region = best_object.get('region', [0,0,300,300])
|
||
|
# best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
|
||
|
|
||
|
# height = int(request.args.get('h', str(best_frame.shape[0])))
|
||
|
# width = int(height*best_frame.shape[1]/best_frame.shape[0])
|
||
|
|
||
|
# best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||
|
# ret, jpg = cv2.imencode('.jpg', best_frame)
|
||
|
# response = make_response(jpg.tobytes())
|
||
|
# response.headers['Content-Type'] = 'image/jpg'
|
||
|
# return response
|
||
|
# else:
|
||
|
# return "Camera named {} not found".format(camera_name), 404
|
||
|
|
||
|
# @app.route('/<camera_name>')
|
||
|
# def mjpeg_feed(camera_name):
|
||
|
# fps = int(request.args.get('fps', '3'))
|
||
|
# height = int(request.args.get('h', '360'))
|
||
|
# if camera_name in CONFIG['cameras']:
|
||
|
# # return a multipart response
|
||
|
# return Response(imagestream(camera_name, fps, height),
|
||
|
# mimetype='multipart/x-mixed-replace; boundary=frame')
|
||
|
# else:
|
||
|
# return "Camera named {} not found".format(camera_name), 404
|
||
|
|
||
|
# @app.route('/<camera_name>/latest.jpg')
|
||
|
# def latest_frame(camera_name):
|
||
|
# if camera_name in CONFIG['cameras']:
|
||
|
# # max out at specified FPS
|
||
|
# frame = object_processor.get_current_frame(camera_name)
|
||
|
# if frame is None:
|
||
|
# frame = np.zeros((720,1280,3), np.uint8)
|
||
|
|
||
|
# height = int(request.args.get('h', str(frame.shape[0])))
|
||
|
# width = int(height*frame.shape[1]/frame.shape[0])
|
||
|
|
||
|
# frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||
|
|
||
|
# ret, jpg = cv2.imencode('.jpg', frame)
|
||
|
# response = make_response(jpg.tobytes())
|
||
|
# response.headers['Content-Type'] = 'image/jpg'
|
||
|
# return response
|
||
|
# else:
|
||
|
# return "Camera named {} not found".format(camera_name), 404
|
||
|
|
||
|
# def imagestream(camera_name, fps, height):
|
||
|
# while True:
|
||
|
# # max out at specified FPS
|
||
|
# time.sleep(1/fps)
|
||
|
# frame = object_processor.get_current_frame(camera_name, draw=True)
|
||
|
# if frame is None:
|
||
|
# frame = np.zeros((height,int(height*16/9),3), np.uint8)
|
||
|
|
||
|
# width = int(height*frame.shape[1]/frame.shape[0])
|
||
|
# frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
|
||
|
|
||
|
# ret, jpg = cv2.imencode('.jpg', frame)
|
||
|
# yield (b'--frame\r\n'
|
||
|
# b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||
|
|
||
|
# app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|