mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-30 19:09:13 +01:00
84 lines
2.9 KiB
Python
84 lines
2.9 KiB
Python
|
import logging
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def preprocess(tensor_input, model_input_shape, model_input_element_type):
|
||
|
model_input_shape = tuple(model_input_shape)
|
||
|
assert tensor_input.dtype == np.uint8, f"tensor_input.dtype: {tensor_input.dtype}"
|
||
|
if len(tensor_input.shape) == 3:
|
||
|
tensor_input = tensor_input[np.newaxis, :]
|
||
|
if model_input_element_type == np.uint8:
|
||
|
# nothing to do for uint8 model input
|
||
|
assert (
|
||
|
model_input_shape == tensor_input.shape
|
||
|
), f"model_input_shape: {model_input_shape}, tensor_input.shape: {tensor_input.shape}"
|
||
|
return tensor_input
|
||
|
assert (
|
||
|
model_input_element_type == np.float32
|
||
|
), f"model_input_element_type: {model_input_element_type}"
|
||
|
# tensor_input must be nhwc
|
||
|
assert tensor_input.shape[3] == 3, f"tensor_input.shape: {tensor_input.shape}"
|
||
|
if tensor_input.shape[1:3] != model_input_shape[2:4]:
|
||
|
logger.warn(
|
||
|
f"preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!"
|
||
|
)
|
||
|
# cv2.dnn.blobFromImage is faster than numpying it
|
||
|
return cv2.dnn.blobFromImage(
|
||
|
tensor_input[0],
|
||
|
1.0 / 255,
|
||
|
(model_input_shape[3], model_input_shape[2]),
|
||
|
None,
|
||
|
swapRB=False,
|
||
|
)
|
||
|
|
||
|
|
||
|
def yolov8_postprocess(
|
||
|
model_input_shape,
|
||
|
tensor_output,
|
||
|
box_count=20,
|
||
|
score_threshold=0.5,
|
||
|
nms_threshold=0.5,
|
||
|
):
|
||
|
model_box_count = tensor_output.shape[2]
|
||
|
probs = tensor_output[0, 4:, :]
|
||
|
all_ids = np.argmax(probs, axis=0)
|
||
|
all_confidences = probs.T[np.arange(model_box_count), all_ids]
|
||
|
all_boxes = tensor_output[0, 0:4, :].T
|
||
|
mask = all_confidences > score_threshold
|
||
|
class_ids = all_ids[mask]
|
||
|
confidences = all_confidences[mask]
|
||
|
cx, cy, w, h = all_boxes[mask].T
|
||
|
|
||
|
if model_input_shape[3] == 3:
|
||
|
scale_y, scale_x = 1 / model_input_shape[1], 1 / model_input_shape[2]
|
||
|
else:
|
||
|
scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3]
|
||
|
detections = np.stack(
|
||
|
(
|
||
|
class_ids,
|
||
|
confidences,
|
||
|
scale_y * (cy - h / 2),
|
||
|
scale_x * (cx - w / 2),
|
||
|
scale_y * (cy + h / 2),
|
||
|
scale_x * (cx + w / 2),
|
||
|
),
|
||
|
axis=1,
|
||
|
)
|
||
|
if detections.shape[0] > box_count:
|
||
|
# if too many detections, do nms filtering to suppress overlapping boxes
|
||
|
boxes = np.stack((cx - w / 2, cy - h / 2, w, h), axis=1)
|
||
|
indexes = cv2.dnn.NMSBoxes(boxes, confidences, score_threshold, nms_threshold)
|
||
|
detections = detections[indexes]
|
||
|
# if still too many, trim the rest by confidence
|
||
|
if detections.shape[0] > box_count:
|
||
|
detections = detections[
|
||
|
np.argpartition(detections[:, 1], -box_count)[-box_count:]
|
||
|
]
|
||
|
detections = detections.copy()
|
||
|
detections.resize((box_count, 6))
|
||
|
return detections
|