blakeblackshear.frigate/frigate/embeddings/functions/clip.py

64 lines
2.0 KiB
Python
Raw Normal View History

"""CLIP Embeddings for Frigate."""
import os
from typing import Tuple, Union
import onnxruntime as ort
from chromadb import EmbeddingFunction, Embeddings
from chromadb.api.types import (
Documents,
Images,
is_document,
is_image,
)
from onnx_clip import OnnxClip
from frigate.const import MODEL_CACHE_DIR
class Clip(OnnxClip):
"""Override load models to download to cache directory."""
@staticmethod
def _load_models(
model: str,
silent: bool,
) -> Tuple[ort.InferenceSession, ort.InferenceSession]:
"""
These models are a part of the container. Treat as as such.
"""
if model == "ViT-B/32":
IMAGE_MODEL_FILE = "clip_image_model_vitb32.onnx"
TEXT_MODEL_FILE = "clip_text_model_vitb32.onnx"
elif model == "RN50":
IMAGE_MODEL_FILE = "clip_image_model_rn50.onnx"
TEXT_MODEL_FILE = "clip_text_model_rn50.onnx"
else:
raise ValueError(f"Unexpected model {model}. No `.onnx` file found.")
models = []
for model_file in [IMAGE_MODEL_FILE, TEXT_MODEL_FILE]:
path = os.path.join(MODEL_CACHE_DIR, "clip", model_file)
models.append(OnnxClip._load_model(path, silent))
return models[0], models[1]
class ClipEmbedding(EmbeddingFunction):
"""Embedding function for CLIP model used in Chroma."""
def __init__(self, model: str = "ViT-B/32"):
"""Initialize CLIP Embedding function."""
self.model = Clip(model)
def __call__(self, input: Union[Documents, Images]) -> Embeddings:
embeddings: Embeddings = []
for item in input:
if is_image(item):
result = self.model.get_image_embeddings([item])
embeddings.append(result[0, :].tolist())
elif is_document(item):
result = self.model.get_text_embeddings([item])
embeddings.append(result[0, :].tolist())
return embeddings