mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-30 19:09:13 +01:00
37 lines
1.3 KiB
Python
37 lines
1.3 KiB
Python
|
import logging
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def preprocess(tensor_input, model_input_shape, model_input_element_type):
|
||
|
model_input_shape = tuple(model_input_shape)
|
||
|
assert tensor_input.dtype == np.uint8, f"tensor_input.dtype: {tensor_input.dtype}"
|
||
|
if len(tensor_input.shape) == 3:
|
||
|
tensor_input = tensor_input[np.newaxis, :]
|
||
|
if model_input_element_type == np.uint8:
|
||
|
# nothing to do for uint8 model input
|
||
|
assert (
|
||
|
model_input_shape == tensor_input.shape
|
||
|
), f"model_input_shape: {model_input_shape}, tensor_input.shape: {tensor_input.shape}"
|
||
|
return tensor_input
|
||
|
assert (
|
||
|
model_input_element_type == np.float32
|
||
|
), f"model_input_element_type: {model_input_element_type}"
|
||
|
# tensor_input must be nhwc
|
||
|
assert tensor_input.shape[3] == 3, f"tensor_input.shape: {tensor_input.shape}"
|
||
|
if tensor_input.shape[1:3] != model_input_shape[2:4]:
|
||
|
logger.warn(
|
||
|
f"preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!"
|
||
|
)
|
||
|
# cv2.dnn.blobFromImage is faster than numpying it
|
||
|
return cv2.dnn.blobFromImage(
|
||
|
tensor_input[0],
|
||
|
1.0 / 255,
|
||
|
(model_input_shape[3], model_input_shape[2]),
|
||
|
None,
|
||
|
swapRB=False,
|
||
|
)
|