mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
switch to a thread for object detection
This commit is contained in:
parent
a074945394
commit
0514eeac03
@ -75,22 +75,12 @@ def main():
|
||||
frame_lock = mp.Lock()
|
||||
# Condition for notifying that a new frame is ready
|
||||
frame_ready = mp.Condition()
|
||||
# Shared memory array for passing prepped frame to tensorflow
|
||||
prepped_frame_array = mp.Array(ctypes.c_uint8, 300*300*3)
|
||||
# create shared value for storing the frame_time
|
||||
prepped_frame_time = mp.Value('d', 0.0)
|
||||
# Event for notifying that object detection needs a new frame
|
||||
prepped_frame_grabbed = mp.Event()
|
||||
# Event for notifying that new frame is ready for detection
|
||||
prepped_frame_ready = mp.Event()
|
||||
# Condition for notifying that objects were parsed
|
||||
objects_parsed = mp.Condition()
|
||||
# Queue for detected objects
|
||||
object_queue = mp.Queue()
|
||||
object_queue = queue.Queue()
|
||||
# Queue for prepped frames
|
||||
prepped_frame_queue = queue.Queue(len(regions)*2)
|
||||
# Array for passing original region box to compute object bounding box
|
||||
prepped_frame_box = mp.Array(ctypes.c_uint16, 3)
|
||||
|
||||
# shape current frame so it can be treated as an image
|
||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
@ -113,28 +103,11 @@ def main():
|
||||
))
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
prepped_frame_array,
|
||||
prepped_frame_time,
|
||||
prepped_frame_ready,
|
||||
prepped_frame_grabbed,
|
||||
prepped_frame_box,
|
||||
prepped_frame_queue
|
||||
prepped_frame_queue,
|
||||
object_queue
|
||||
)
|
||||
prepped_queue_processor.start()
|
||||
|
||||
# create a process for object detection
|
||||
# if the coprocessor is doing the work, can this run as a thread
|
||||
# since it is waiting for IO?
|
||||
detection_process = mp.Process(target=detect_objects, args=(
|
||||
prepped_frame_array,
|
||||
prepped_frame_time,
|
||||
prepped_frame_ready,
|
||||
prepped_frame_grabbed,
|
||||
prepped_frame_box,
|
||||
object_queue, DEBUG
|
||||
))
|
||||
detection_process.daemon = True
|
||||
|
||||
# start a thread to store recent motion frames for processing
|
||||
frame_tracker = FrameTracker(frame_arr, shared_frame_time, frame_ready, frame_lock,
|
||||
recent_frames)
|
||||
@ -176,9 +149,6 @@ def main():
|
||||
# start the object detection prep threads
|
||||
for detection_prep_thread in detection_prep_threads:
|
||||
detection_prep_thread.start()
|
||||
|
||||
detection_process.start()
|
||||
print("detection_process pid ", detection_process.pid)
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
app = Flask(__name__)
|
||||
@ -237,7 +207,6 @@ def main():
|
||||
capture_process.join()
|
||||
for detection_prep_thread in detection_prep_threads:
|
||||
detection_prep_thread.join()
|
||||
detection_process.join()
|
||||
frame_tracker.join()
|
||||
best_person_frame.join()
|
||||
object_parser.join()
|
||||
|
@ -21,89 +21,40 @@ def ReadLabelFile(file_path):
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
|
||||
def detect_objects(prepped_frame_array, prepped_frame_time,
|
||||
prepped_frame_ready, prepped_frame_grabbed,
|
||||
prepped_frame_box, object_queue, debug):
|
||||
prepped_frame_np = tonumpyarray(prepped_frame_array)
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
engine = DetectionEngine(PATH_TO_CKPT)
|
||||
labels = ReadLabelFile(PATH_TO_LABELS)
|
||||
|
||||
frame_time = 0.0
|
||||
region_box = [0,0,0]
|
||||
while True:
|
||||
# wait until a frame is ready
|
||||
prepped_frame_ready.wait()
|
||||
|
||||
prepped_frame_copy = prepped_frame_np.copy()
|
||||
frame_time = prepped_frame_time.value
|
||||
region_box[:] = prepped_frame_box
|
||||
|
||||
prepped_frame_grabbed.set()
|
||||
# print("Grabbed " + str(region_box[1]) + "," + str(region_box[2]))
|
||||
|
||||
# Actual detection.
|
||||
objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
||||
# time.sleep(0.1)
|
||||
# objects = []
|
||||
# print(engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
if objects:
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
object_queue.put({
|
||||
'frame_time': frame_time,
|
||||
'name': str(labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * region_box[0]) + region_box[1]),
|
||||
'ymin': int((box[1] * region_box[0]) + region_box[2]),
|
||||
'xmax': int((box[2] * region_box[0]) + region_box[1]),
|
||||
'ymax': int((box[3] * region_box[0]) + region_box[2])
|
||||
})
|
||||
# else:
|
||||
# object_queue.put({
|
||||
# 'frame_time': frame_time,
|
||||
# 'name': 'dummy',
|
||||
# 'score': 0.99,
|
||||
# 'xmin': int(0 + region_box[1]),
|
||||
# 'ymin': int(0 + region_box[2]),
|
||||
# 'xmax': int(10 + region_box[1]),
|
||||
# 'ymax': int(10 + region_box[2])
|
||||
# })
|
||||
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, prepped_frame_array,
|
||||
prepped_frame_time,
|
||||
prepped_frame_ready,
|
||||
prepped_frame_grabbed,
|
||||
prepped_frame_box,
|
||||
prepped_frame_queue):
|
||||
def __init__(self, prepped_frame_queue, object_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.prepped_frame_array = prepped_frame_array
|
||||
self.prepped_frame_time = prepped_frame_time
|
||||
self.prepped_frame_ready = prepped_frame_ready
|
||||
self.prepped_frame_grabbed = prepped_frame_grabbed
|
||||
self.prepped_frame_box = prepped_frame_box
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
self.object_queue = object_queue
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
self.labels = ReadLabelFile(PATH_TO_LABELS)
|
||||
|
||||
def run(self):
|
||||
prepped_frame_np = tonumpyarray(self.prepped_frame_array)
|
||||
# process queue...
|
||||
while True:
|
||||
frame = self.prepped_frame_queue.get()
|
||||
# print(self.prepped_frame_queue.qsize())
|
||||
prepped_frame_np[:] = frame['frame']
|
||||
self.prepped_frame_time.value = frame['frame_time']
|
||||
self.prepped_frame_box[0] = frame['region_size']
|
||||
self.prepped_frame_box[1] = frame['region_x_offset']
|
||||
self.prepped_frame_box[2] = frame['region_y_offset']
|
||||
# print("Passed " + str(frame['region_x_offset']) + "," + str(frame['region_x_offset']))
|
||||
self.prepped_frame_ready.set()
|
||||
self.prepped_frame_grabbed.wait()
|
||||
self.prepped_frame_grabbed.clear()
|
||||
self.prepped_frame_ready.clear()
|
||||
# Actual detection.
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
|
||||
# time.sleep(0.1)
|
||||
# objects = []
|
||||
# print(engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
if objects:
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
self.object_queue.put({
|
||||
'frame_time': frame['frame_time'],
|
||||
'name': str(self.labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
|
||||
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
|
||||
})
|
||||
|
||||
|
||||
# should this be a region class?
|
||||
@ -156,5 +107,5 @@ class FramePrepper(threading.Thread):
|
||||
'region_x_offset': self.region_x_offset,
|
||||
'region_y_offset': self.region_y_offset
|
||||
})
|
||||
# else:
|
||||
# print("queue full. moving on")
|
||||
else:
|
||||
print("queue full. moving on")
|
||||
|
Loading…
Reference in New Issue
Block a user