parse the objects into a global array in a separate thread

This commit is contained in:
blakeblackshear 2019-02-04 06:18:49 -06:00
parent b91c24bf8f
commit 072997736c

View File

@ -5,6 +5,7 @@ import datetime
import ctypes
import logging
import multiprocessing as mp
import threading
from contextlib import closing
import numpy as np
import tensorflow as tf
@ -27,6 +28,8 @@ REGION_SIZE = 300
REGION_X_OFFSET = 1250
REGION_Y_OFFSET = 180
DETECTED_OBJECTS = []
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
@ -64,11 +67,36 @@ def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_o
box[3] = (box[3] * region_size) + region_x_offset
objects += [value, scores[0, index]] + box
# only get the first 10 objects
if len(objects) = 60:
if len(objects) == 60:
break
return objects
class ObjectParser(threading.Thread):
def __init__(self, object_arrays):
threading.Thread.__init__(self)
self._object_arrays = object_arrays
def run(self):
global DETECTED_OBJECTS
while True:
detected_objects = []
for object_array in self._object_arrays:
object_index = 0
while(object_index < 60 and object_array[object_index] > 0):
object_class = object_array[object_index]
detected_objects.append({
'name': str(category_index.get(object_class).get('name')),
'score': object_array[object_index+1],
'ymin': int(object_array[object_index+2]),
'xmin': int(object_array[object_index+3]),
'ymax': int(object_array[object_index+4]),
'xmax': int(object_array[object_index+5])
})
object_index += 6
DETECTED_OBJECTS = detected_objects
time.sleep(0.01)
def main():
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
@ -101,6 +129,9 @@ def main():
detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_output_arr, shared_frame_time, frame_shape, REGION_SIZE, REGION_X_OFFSET, REGION_Y_OFFSET))
detection_process.daemon = True
object_parser = ObjectParser([shared_output_arr])
object_parser.start()
capture_process.start()
print("capture_process pid ", capture_process.pid)
detection_process.start()
@ -114,33 +145,27 @@ def main():
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
global DETECTED_OBJECTS
while True:
# max out at 5 FPS
time.sleep(0.2)
# make a copy of the current detected objects
detected_objects = DETECTED_OBJECTS.copy()
# make a copy of the current frame
frame = frame_arr.copy()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
object_index = 0
while(object_index < 60 and shared_output_arr[object_index] > 0):
object_class = shared_output_arr[object_index]
object_name = str(category_index.get(object_class).get('name'))
score = shared_output_arr[object_index+1]
display_str = '{}: {}%'.format(object_name, int(100*score))
ymin = int(shared_output_arr[object_index+2])
xmin = int(shared_output_arr[object_index+3])
ymax = int(shared_output_arr[object_index+4])
xmax = int(shared_output_arr[object_index+5])
for obj in DETECTED_OBJECTS:
vis_util.draw_bounding_box_on_image_array(frame,
ymin,
xmin,
ymax,
xmax,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=[display_str],
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)
object_index += 6
cv2.rectangle(frame, (REGION_X_OFFSET, REGION_Y_OFFSET), (REGION_X_OFFSET+REGION_SIZE, REGION_Y_OFFSET+REGION_SIZE), (255,255,255), 2)
# convert back to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
@ -153,6 +178,7 @@ def main():
capture_process.join()
detection_process.join()
object_parser.join()
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
@ -181,14 +207,12 @@ def fetch_frames(shared_arr, shared_frame_time, frame_shape):
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
# copy the frame into the numpy array
# Position 1
# cropped_frame[:] = frame[270:720, 550:1000]
# Position 2
# frame_cropped = frame[270:720, 100:550]
arr[:] = frame
# signal to the detection_process by setting the shared_frame_time
shared_frame_time.value = frame_time.timestamp()
else:
# sleep a little to reduce CPU usage
time.sleep(0.01)
video.release()