mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	parse the objects into a global array in a separate thread
This commit is contained in:
		
							parent
							
								
									b91c24bf8f
								
							
						
					
					
						commit
						072997736c
					
				@ -5,6 +5,7 @@ import datetime
 | 
			
		||||
import ctypes
 | 
			
		||||
import logging
 | 
			
		||||
import multiprocessing as mp
 | 
			
		||||
import threading
 | 
			
		||||
from contextlib import closing
 | 
			
		||||
import numpy as np
 | 
			
		||||
import tensorflow as tf
 | 
			
		||||
@ -27,6 +28,8 @@ REGION_SIZE = 300
 | 
			
		||||
REGION_X_OFFSET = 1250
 | 
			
		||||
REGION_Y_OFFSET = 180
 | 
			
		||||
 | 
			
		||||
DETECTED_OBJECTS = []
 | 
			
		||||
 | 
			
		||||
# Loading label map
 | 
			
		||||
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
 | 
			
		||||
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
 | 
			
		||||
@ -64,11 +67,36 @@ def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_o
 | 
			
		||||
            box[3] = (box[3] * region_size) + region_x_offset
 | 
			
		||||
            objects += [value, scores[0, index]] + box
 | 
			
		||||
        # only get the first 10 objects
 | 
			
		||||
        if len(objects) = 60:
 | 
			
		||||
        if len(objects) == 60:
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
    return objects
 | 
			
		||||
 | 
			
		||||
class ObjectParser(threading.Thread):
 | 
			
		||||
    def __init__(self, object_arrays):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self._object_arrays = object_arrays
 | 
			
		||||
 | 
			
		||||
    def run(self):
 | 
			
		||||
        global DETECTED_OBJECTS
 | 
			
		||||
        while True:
 | 
			
		||||
            detected_objects = []
 | 
			
		||||
            for object_array in self._object_arrays:
 | 
			
		||||
                object_index = 0
 | 
			
		||||
                while(object_index < 60 and object_array[object_index] > 0):
 | 
			
		||||
                    object_class = object_array[object_index]
 | 
			
		||||
                    detected_objects.append({
 | 
			
		||||
                        'name': str(category_index.get(object_class).get('name')),
 | 
			
		||||
                        'score': object_array[object_index+1],
 | 
			
		||||
                        'ymin': int(object_array[object_index+2]),
 | 
			
		||||
                        'xmin': int(object_array[object_index+3]),
 | 
			
		||||
                        'ymax': int(object_array[object_index+4]),
 | 
			
		||||
                        'xmax': int(object_array[object_index+5])
 | 
			
		||||
                    })
 | 
			
		||||
                    object_index += 6
 | 
			
		||||
            DETECTED_OBJECTS = detected_objects
 | 
			
		||||
            time.sleep(0.01)
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    # capture a single frame and check the frame shape so the correct array
 | 
			
		||||
    # size can be allocated in memory
 | 
			
		||||
@ -101,6 +129,9 @@ def main():
 | 
			
		||||
    detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_output_arr, shared_frame_time, frame_shape, REGION_SIZE, REGION_X_OFFSET, REGION_Y_OFFSET))
 | 
			
		||||
    detection_process.daemon = True
 | 
			
		||||
 | 
			
		||||
    object_parser = ObjectParser([shared_output_arr])
 | 
			
		||||
    object_parser.start()
 | 
			
		||||
 | 
			
		||||
    capture_process.start()
 | 
			
		||||
    print("capture_process pid ", capture_process.pid)
 | 
			
		||||
    detection_process.start()
 | 
			
		||||
@ -114,33 +145,27 @@ def main():
 | 
			
		||||
        return Response(imagestream(),
 | 
			
		||||
                        mimetype='multipart/x-mixed-replace; boundary=frame')
 | 
			
		||||
    def imagestream():
 | 
			
		||||
        global DETECTED_OBJECTS
 | 
			
		||||
        while True:
 | 
			
		||||
            # max out at 5 FPS
 | 
			
		||||
            time.sleep(0.2)
 | 
			
		||||
            # make a copy of the current detected objects
 | 
			
		||||
            detected_objects = DETECTED_OBJECTS.copy()
 | 
			
		||||
            # make a copy of the current frame
 | 
			
		||||
            frame = frame_arr.copy()
 | 
			
		||||
            # convert to RGB for drawing
 | 
			
		||||
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 | 
			
		||||
            # draw the bounding boxes on the screen
 | 
			
		||||
            object_index = 0
 | 
			
		||||
            while(object_index < 60 and shared_output_arr[object_index] > 0):
 | 
			
		||||
                object_class = shared_output_arr[object_index]
 | 
			
		||||
                object_name = str(category_index.get(object_class).get('name'))
 | 
			
		||||
                score = shared_output_arr[object_index+1]
 | 
			
		||||
                display_str = '{}: {}%'.format(object_name, int(100*score))
 | 
			
		||||
                ymin = int(shared_output_arr[object_index+2])
 | 
			
		||||
                xmin = int(shared_output_arr[object_index+3])
 | 
			
		||||
                ymax = int(shared_output_arr[object_index+4])
 | 
			
		||||
                xmax = int(shared_output_arr[object_index+5])
 | 
			
		||||
            for obj in DETECTED_OBJECTS:
 | 
			
		||||
                vis_util.draw_bounding_box_on_image_array(frame,
 | 
			
		||||
                    ymin,
 | 
			
		||||
                    xmin,
 | 
			
		||||
                    ymax,
 | 
			
		||||
                    xmax,
 | 
			
		||||
                    obj['ymin'],
 | 
			
		||||
                    obj['xmin'],
 | 
			
		||||
                    obj['ymax'],
 | 
			
		||||
                    obj['xmax'],
 | 
			
		||||
                    color='red',
 | 
			
		||||
                    thickness=2,
 | 
			
		||||
                    display_str_list=[display_str],
 | 
			
		||||
                    display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
 | 
			
		||||
                    use_normalized_coordinates=False)
 | 
			
		||||
                object_index += 6
 | 
			
		||||
            cv2.rectangle(frame, (REGION_X_OFFSET, REGION_Y_OFFSET), (REGION_X_OFFSET+REGION_SIZE, REGION_Y_OFFSET+REGION_SIZE), (255,255,255), 2)
 | 
			
		||||
            # convert back to BGR
 | 
			
		||||
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
 | 
			
		||||
@ -153,6 +178,7 @@ def main():
 | 
			
		||||
 | 
			
		||||
    capture_process.join()
 | 
			
		||||
    detection_process.join()
 | 
			
		||||
    object_parser.join()
 | 
			
		||||
 | 
			
		||||
# convert shared memory array into numpy array
 | 
			
		||||
def tonumpyarray(mp_arr):
 | 
			
		||||
@ -181,14 +207,12 @@ def fetch_frames(shared_arr, shared_frame_time, frame_shape):
 | 
			
		||||
                # go ahead and decode the current frame
 | 
			
		||||
                ret, frame = video.retrieve()
 | 
			
		||||
                if ret:
 | 
			
		||||
                    # copy the frame into the numpy array
 | 
			
		||||
                    # Position 1
 | 
			
		||||
                    # cropped_frame[:] = frame[270:720, 550:1000]
 | 
			
		||||
                    # Position 2
 | 
			
		||||
                    # frame_cropped = frame[270:720, 100:550]
 | 
			
		||||
                    arr[:] = frame
 | 
			
		||||
                    # signal to the detection_process by setting the shared_frame_time
 | 
			
		||||
                    shared_frame_time.value = frame_time.timestamp()
 | 
			
		||||
            else:
 | 
			
		||||
                # sleep a little to reduce CPU usage
 | 
			
		||||
                time.sleep(0.01)
 | 
			
		||||
    
 | 
			
		||||
    video.release()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user