mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-03-04 00:17:22 +01:00
Initial implementation of D-FINE model via ONNX (#16772)
* initial implementation of D-FINE model * revert docker-compose * add docs for D-FINE * remove weird auto-format issue
This commit is contained in:
parent
1d8f1bd7ae
commit
0de928703f
@ -8,9 +8,25 @@
|
||||
"overrideCommand": false,
|
||||
"remoteUser": "vscode",
|
||||
"features": {
|
||||
"ghcr.io/devcontainers/features/common-utils:1": {}
|
||||
"ghcr.io/devcontainers/features/common-utils:2": {}
|
||||
// Uncomment the following lines to use ONNX Runtime with CUDA support
|
||||
// "ghcr.io/devcontainers/features/nvidia-cuda:1": {
|
||||
// "installCudnn": true,
|
||||
// "installNvtx": true,
|
||||
// "installToolkit": true,
|
||||
// "cudaVersion": "12.5",
|
||||
// "cudnnVersion": "9.4.0.58"
|
||||
// },
|
||||
// "./features/onnxruntime-gpu": {}
|
||||
},
|
||||
"forwardPorts": [8971, 5000, 5001, 5173, 8554, 8555],
|
||||
"forwardPorts": [
|
||||
8971,
|
||||
5000,
|
||||
5001,
|
||||
5173,
|
||||
8554,
|
||||
8555
|
||||
],
|
||||
"portsAttributes": {
|
||||
"8971": {
|
||||
"label": "External NGINX",
|
||||
@ -64,10 +80,18 @@
|
||||
"editor.formatOnType": true,
|
||||
"python.testing.pytestEnabled": false,
|
||||
"python.testing.unittestEnabled": true,
|
||||
"python.testing.unittestArgs": ["-v", "-s", "./frigate/test"],
|
||||
"python.testing.unittestArgs": [
|
||||
"-v",
|
||||
"-s",
|
||||
"./frigate/test"
|
||||
],
|
||||
"files.trimTrailingWhitespace": true,
|
||||
"eslint.workingDirectories": ["./web"],
|
||||
"isort.args": ["--settings-path=./pyproject.toml"],
|
||||
"eslint.workingDirectories": [
|
||||
"./web"
|
||||
],
|
||||
"isort.args": [
|
||||
"--settings-path=./pyproject.toml"
|
||||
],
|
||||
"[python]": {
|
||||
"editor.defaultFormatter": "charliermarsh.ruff",
|
||||
"editor.formatOnSave": true,
|
||||
@ -86,9 +110,16 @@
|
||||
],
|
||||
"editor.tabSize": 2
|
||||
},
|
||||
"cSpell.ignoreWords": ["rtmp"],
|
||||
"cSpell.words": ["preact", "astype", "hwaccel", "mqtt"]
|
||||
"cSpell.ignoreWords": [
|
||||
"rtmp"
|
||||
],
|
||||
"cSpell.words": [
|
||||
"preact",
|
||||
"astype",
|
||||
"hwaccel",
|
||||
"mqtt"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,22 @@
|
||||
{
|
||||
"id": "onnxruntime-gpu",
|
||||
"version": "0.0.1",
|
||||
"name": "ONNX Runtime GPU (Nvidia)",
|
||||
"description": "Installs ONNX Runtime for Nvidia GPUs.",
|
||||
"documentationURL": "",
|
||||
"options": {
|
||||
"version": {
|
||||
"type": "string",
|
||||
"proposals": [
|
||||
"latest",
|
||||
"1.20.1",
|
||||
"1.20.0"
|
||||
],
|
||||
"default": "latest",
|
||||
"description": "Version of ONNX Runtime to install"
|
||||
}
|
||||
},
|
||||
"installsAfter": [
|
||||
"ghcr.io/devcontainers/features/nvidia-cuda"
|
||||
]
|
||||
}
|
15
.devcontainer/features/onnxruntime-gpu/install.sh
Normal file
15
.devcontainer/features/onnxruntime-gpu/install.sh
Normal file
@ -0,0 +1,15 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
VERSION=${VERSION}
|
||||
|
||||
python3 -m pip config set global.break-system-packages true
|
||||
# if VERSION == "latest" or VERSION is empty, install the latest version
|
||||
if [ "$VERSION" == "latest" ] || [ -z "$VERSION" ]; then
|
||||
python3 -m pip install onnxruntime-gpu
|
||||
else
|
||||
python3 -m pip install onnxruntime-gpu==$VERSION
|
||||
fi
|
||||
|
||||
echo "Done!"
|
@ -10,25 +10,31 @@ title: Object Detectors
|
||||
Frigate supports multiple different detectors that work on different types of hardware:
|
||||
|
||||
**Most Hardware**
|
||||
|
||||
- [Coral EdgeTPU](#edge-tpu-detector): The Google Coral EdgeTPU is available in USB and m.2 format allowing for a wide range of compatibility with devices.
|
||||
- [Hailo](#hailo-8l): The Hailo8 AI Acceleration module is available in m.2 format with a HAT for RPi devices, offering a wide range of compatibility with devices.
|
||||
|
||||
**AMD**
|
||||
|
||||
- [ROCm](#amdrocm-gpu-detector): ROCm can run on AMD Discrete GPUs to provide efficient object detection.
|
||||
- [ONNX](#onnx): ROCm will automatically be detected and used as a detector in the `-rocm` Frigate image when a supported ONNX model is configured.
|
||||
|
||||
**Intel**
|
||||
|
||||
- [OpenVino](#openvino-detector): OpenVino can run on Intel Arc GPUs, Intel integrated GPUs, and Intel CPUs to provide efficient object detection.
|
||||
- [ONNX](#onnx): OpenVINO will automatically be detected and used as a detector in the default Frigate image when a supported ONNX model is configured.
|
||||
|
||||
**Nvidia**
|
||||
|
||||
- [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Nvidia GPUs and Jetson devices, using one of many default models.
|
||||
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` or `-tensorrt-jp(4/5)` Frigate images when a supported ONNX model is configured.
|
||||
|
||||
**Rockchip**
|
||||
|
||||
- [RKNN](#rockchip-platform): RKNN models can run on Rockchip devices with included NPUs.
|
||||
|
||||
**For Testing**
|
||||
|
||||
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
|
||||
|
||||
:::
|
||||
@ -147,7 +153,6 @@ model:
|
||||
path: /config/model_cache/h8l_cache/ssd_mobilenet_v1.hef
|
||||
```
|
||||
|
||||
|
||||
## OpenVINO Detector
|
||||
|
||||
The OpenVINO detector type runs an OpenVINO IR model on AMD and Intel CPUs, Intel GPUs and Intel VPU hardware. To configure an OpenVINO detector, set the `"type"` attribute to `"openvino"`.
|
||||
@ -412,7 +417,7 @@ When using docker compose:
|
||||
```yaml
|
||||
services:
|
||||
frigate:
|
||||
...
|
||||
|
||||
environment:
|
||||
HSA_OVERRIDE_GFX_VERSION: "9.0.0"
|
||||
```
|
||||
@ -555,6 +560,50 @@ model:
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
#### D-FINE
|
||||
|
||||
[D-FINE](https://github.com/Peterande/D-FINE) is the [current state of the art](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=d-fine-redefine-regression-task-in-detrs-as) at the time of writing. The ONNX exported models are supported, but not included by default.
|
||||
|
||||
To export as ONNX:
|
||||
|
||||
1. Clone: https://github.com/Peterande/D-FINE and install all dependencies.
|
||||
2. Select and download a checkpoint from the [readme](https://github.com/Peterande/D-FINE).
|
||||
3. Modify line 58 of `tools/deployment/export_onnx.py` and change batch size to 1: `data = torch.rand(1, 3, 640, 640)`
|
||||
4. Run the export, making sure you select the right config, for your checkpoint.
|
||||
|
||||
Example:
|
||||
|
||||
```
|
||||
python3 tools/deployment/export_onnx.py -c configs/dfine/objects365/dfine_hgnetv2_m_obj2coco.yml -r output/dfine_m_obj2coco.pth
|
||||
```
|
||||
|
||||
:::tip
|
||||
|
||||
Model export has only been tested on Linux (or WSL2). Not all dependencies are in `requirements.txt`. Some live in the deployment folder, and some are still missing entirely and must be installed manually.
|
||||
|
||||
Make sure you change the batch size to 1 before exporting.
|
||||
|
||||
:::
|
||||
|
||||
After placing the downloaded onnx model in your config folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
onnx:
|
||||
type: onnx
|
||||
|
||||
model:
|
||||
model_type: dfine
|
||||
width: 640
|
||||
height: 640
|
||||
input_tensor: nchw
|
||||
input_dtype: float
|
||||
path: /config/model_cache/dfine_m_obj2coco.onnx
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
## CPU Detector (not recommended)
|
||||
|
||||
The CPU detector type runs a TensorFlow Lite model utilizing the CPU without hardware acceleration. It is recommended to use a hardware accelerated detector type instead for better performance. To configure a CPU based detector, set the `"type"` attribute to `"cpu"`.
|
||||
@ -704,7 +753,7 @@ To convert a onnx model to the rknn format using the [rknn-toolkit2](https://git
|
||||
This is an example configuration file that you need to adjust to your specific onnx model:
|
||||
|
||||
```yaml
|
||||
soc: ["rk3562","rk3566", "rk3568", "rk3576", "rk3588"]
|
||||
soc: ["rk3562", "rk3566", "rk3568", "rk3576", "rk3588"]
|
||||
quantization: false
|
||||
|
||||
output_name: "{input_basename}"
|
||||
|
@ -37,6 +37,7 @@ class ModelTypeEnum(str, Enum):
|
||||
yolox = "yolox"
|
||||
yolov9 = "yolov9"
|
||||
yolonas = "yolonas"
|
||||
dfine = "dfine"
|
||||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
|
@ -9,7 +9,11 @@ from frigate.detectors.detector_config import (
|
||||
BaseDetectorConfig,
|
||||
ModelTypeEnum,
|
||||
)
|
||||
from frigate.util.model import get_ort_providers, post_process_yolov9
|
||||
from frigate.util.model import (
|
||||
get_ort_providers,
|
||||
post_process_dfine,
|
||||
post_process_yolov9,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -41,6 +45,7 @@ class ONNXDetector(DetectionApi):
|
||||
providers, options = get_ort_providers(
|
||||
detector_config.device == "CPU", detector_config.device
|
||||
)
|
||||
|
||||
self.model = ort.InferenceSession(
|
||||
path, providers=providers, provider_options=options
|
||||
)
|
||||
@ -55,6 +60,16 @@ class ONNXDetector(DetectionApi):
|
||||
logger.info(f"ONNX: {path} loaded")
|
||||
|
||||
def detect_raw(self, tensor_input: np.ndarray):
|
||||
if self.onnx_model_type == ModelTypeEnum.dfine:
|
||||
tensor_output = self.model.run(
|
||||
None,
|
||||
{
|
||||
"images": tensor_input,
|
||||
"orig_target_sizes": np.array([[self.h, self.w]], dtype=np.int64),
|
||||
},
|
||||
)
|
||||
return post_process_dfine(tensor_output, self.w, self.h)
|
||||
|
||||
model_input_name = self.model.get_inputs()[0].name
|
||||
tensor_output = self.model.run(None, {model_input_name: tensor_input})
|
||||
|
||||
|
@ -9,7 +9,34 @@ import onnxruntime as ort
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
### Post Processing
|
||||
def post_process_dfine(tensor_output: np.ndarray, width, height) -> np.ndarray:
|
||||
class_ids = tensor_output[0][tensor_output[2] > 0.4]
|
||||
boxes = tensor_output[1][tensor_output[2] > 0.4]
|
||||
scores = tensor_output[2][tensor_output[2] > 0.4]
|
||||
|
||||
input_shape = np.array([height, width, height, width])
|
||||
boxes = np.divide(boxes, input_shape, dtype=np.float32)
|
||||
indices = cv2.dnn.NMSBoxes(boxes, scores, score_threshold=0.4, nms_threshold=0.4)
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
for i, (bbox, confidence, class_id) in enumerate(
|
||||
zip(boxes[indices], scores[indices], class_ids[indices])
|
||||
):
|
||||
if i == 20:
|
||||
break
|
||||
|
||||
detections[i] = [
|
||||
class_id,
|
||||
confidence,
|
||||
bbox[1],
|
||||
bbox[0],
|
||||
bbox[3],
|
||||
bbox[2],
|
||||
]
|
||||
|
||||
return detections
|
||||
|
||||
|
||||
def post_process_yolov9(predictions: np.ndarray, width, height) -> np.ndarray:
|
||||
|
Loading…
Reference in New Issue
Block a user