cleanup old code

This commit is contained in:
Blake Blackshear 2020-02-16 08:49:43 -06:00
parent 68c3a069ba
commit 1089a40943
5 changed files with 7 additions and 476 deletions

View File

@ -1,139 +0,0 @@
import datetime
import time
import cv2
import threading
import copy
# import prctl
import numpy as np
from edgetpu.detection.engine import DetectionEngine
from frigate.util import tonumpyarray, LABELS, PATH_TO_CKPT, calculate_region
class PreppedQueueProcessor(threading.Thread):
def __init__(self, cameras, prepped_frame_queue, fps):
threading.Thread.__init__(self)
self.cameras = cameras
self.prepped_frame_queue = prepped_frame_queue
# Load the edgetpu engine and labels
self.engine = DetectionEngine(PATH_TO_CKPT)
self.labels = LABELS
self.fps = fps
self.avg_inference_speed = 10
def run(self):
prctl.set_name(self.__class__.__name__)
# process queue...
while True:
frame = self.prepped_frame_queue.get()
# Actual detection.
frame['detected_objects'] = self.engine.detect_with_input_tensor(frame['frame'], threshold=0.2, top_k=5)
self.fps.update()
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
self.cameras[frame['camera_name']].detected_objects_queue.put(frame)
class RegionRequester(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
with self.camera.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a new frame
if self.camera.frame_time.value == frame_time or (now - self.camera.frame_time.value) > 0.5:
self.camera.frame_ready.wait()
# make a copy of the frame_time
frame_time = self.camera.frame_time.value
# grab the current tracked objects
with self.camera.object_tracker.tracked_objects_lock:
tracked_objects = copy.deepcopy(self.camera.object_tracker.tracked_objects).values()
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
self.camera.regions_in_process[frame_time] += len(tracked_objects)
for index, region in enumerate(self.camera.config['regions']):
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': index,
'size': region['size'],
'x_offset': region['x_offset'],
'y_offset': region['y_offset']
})
# request a region for tracked objects
for tracked_object in tracked_objects:
box = tracked_object['box']
# calculate a new region that will hopefully get the entire object
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
box['xmin'], box['ymin'],
box['xmax'], box['ymax'])
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': -1,
'size': size,
'x_offset': x_offset,
'y_offset': y_offset
})
class RegionPrepper(threading.Thread):
def __init__(self, camera, frame_cache, resize_request_queue, prepped_frame_queue):
threading.Thread.__init__(self)
self.camera = camera
self.frame_cache = frame_cache
self.resize_request_queue = resize_request_queue
self.prepped_frame_queue = prepped_frame_queue
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
resize_request = self.resize_request_queue.get()
# if the queue is over 100 items long, only prep dynamic regions
if resize_request['region_id'] != -1 and self.prepped_frame_queue.qsize() > 100:
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[resize_request['frame_time']] -= 1
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
del self.camera.regions_in_process[resize_request['frame_time']]
self.camera.skipped_region_tracker.update()
continue
frame = self.frame_cache.get(resize_request['frame_time'], None)
if frame is None:
print("RegionPrepper: frame_time not in frame_cache")
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[resize_request['frame_time']] -= 1
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
del self.camera.regions_in_process[resize_request['frame_time']]
self.camera.skipped_region_tracker.update()
continue
# make a copy of the region
cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy()
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
# TODO: use Pillow-SIMD?
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame, axis=0)
# add the frame to the queue
resize_request['frame'] = frame_expanded.flatten().copy()
self.prepped_frame_queue.put(resize_request)

View File

@ -10,11 +10,12 @@ import itertools
import pyarrow.plasma as plasma import pyarrow.plasma as plasma
import SharedArray as sa import SharedArray as sa
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label, ReadLabelFile from frigate.util import draw_box_with_label
from frigate.edgetpu import load_labels
PATH_TO_LABELS = '/lab/labelmap.txt' PATH_TO_LABELS = '/lab/labelmap.txt'
LABELS = ReadLabelFile(PATH_TO_LABELS) LABELS = load_labels(PATH_TO_LABELS)
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys())) cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
COLOR_MAP = {} COLOR_MAP = {}

View File

@ -2,7 +2,6 @@ import time
import datetime import datetime
import threading import threading
import cv2 import cv2
# import prctl
import itertools import itertools
import copy import copy
import numpy as np import numpy as np
@ -11,237 +10,6 @@ from collections import defaultdict
from scipy.spatial import distance as dist from scipy.spatial import distance as dist
from frigate.util import draw_box_with_label, calculate_region from frigate.util import draw_box_with_label, calculate_region
# class ObjectCleaner(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# def run(self):
# prctl.set_name("ObjectCleaner")
# while True:
# # wait a bit before checking for expired frames
# time.sleep(0.2)
# for frame_time in list(self.camera.detected_objects.keys()).copy():
# if not frame_time in self.camera.frame_cache:
# del self.camera.detected_objects[frame_time]
# objects_deregistered = False
# with self.camera.object_tracker.tracked_objects_lock:
# now = datetime.datetime.now().timestamp()
# for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
# # if the object is more than 10 seconds old
# # and not in the most recent frame, deregister
# if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
# self.camera.object_tracker.deregister(id)
# objects_deregistered = True
# if objects_deregistered:
# with self.camera.objects_tracked:
# self.camera.objects_tracked.notify_all()
# class DetectedObjectsProcessor(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# frame = self.camera.detected_objects_queue.get()
# objects = frame['detected_objects']
# for raw_obj in objects:
# name = str(LABELS[raw_obj.label_id])
# if not name in self.camera.objects_to_track:
# continue
# obj = {
# 'name': name,
# 'score': float(raw_obj.score),
# 'box': {
# 'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
# 'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
# 'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
# 'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
# },
# 'region': {
# 'xmin': frame['x_offset'],
# 'ymin': frame['y_offset'],
# 'xmax': frame['x_offset']+frame['size'],
# 'ymax': frame['y_offset']+frame['size']
# },
# 'frame_time': frame['frame_time'],
# 'region_id': frame['region_id']
# }
# # if the object is within 5 pixels of the region border, and the region is not on the edge
# # consider the object to be clipped
# obj['clipped'] = False
# if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
# (obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
# (self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
# (self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
# obj['clipped'] = True
# # Compute the area
# # TODO: +1 right?
# obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
# self.camera.detected_objects[frame['frame_time']].append(obj)
# # TODO: use in_process and processed counts instead to avoid lock
# with self.camera.regions_in_process_lock:
# if frame['frame_time'] in self.camera.regions_in_process:
# self.camera.regions_in_process[frame['frame_time']] -= 1
# # print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
# if self.camera.regions_in_process[frame['frame_time']] == 0:
# del self.camera.regions_in_process[frame['frame_time']]
# # print(f"{frame['frame_time']} no remaining regions")
# self.camera.finished_frame_queue.put(frame['frame_time'])
# else:
# self.camera.finished_frame_queue.put(frame['frame_time'])
# # Thread that checks finished frames for clipped objects and sends back
# # for processing if needed
# # TODO: evaluate whether or not i really need separate threads/queues for each step
# # given that only 1 thread will really be able to run at a time. you need a
# # separate process to actually do things in parallel for when you are CPU bound.
# # threads are good when you are waiting and could be processing while you wait
# class RegionRefiner(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# frame_time = self.camera.finished_frame_queue.get()
# detected_objects = self.camera.detected_objects[frame_time].copy()
# # print(f"{frame_time} finished")
# # group by name
# detected_object_groups = defaultdict(lambda: [])
# for obj in detected_objects:
# detected_object_groups[obj['name']].append(obj)
# look_again = False
# selected_objects = []
# for group in detected_object_groups.values():
# # apply non-maxima suppression to suppress weak, overlapping bounding boxes
# boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
# for o in group]
# confidences = [o['score'] for o in group]
# idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# for index in idxs:
# obj = group[index[0]]
# selected_objects.append(obj)
# if obj['clipped']:
# box = obj['box']
# # calculate a new region that will hopefully get the entire object
# (size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
# box['xmin'], box['ymin'],
# box['xmax'], box['ymax'])
# # print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
# with self.camera.regions_in_process_lock:
# if not frame_time in self.camera.regions_in_process:
# self.camera.regions_in_process[frame_time] = 1
# else:
# self.camera.regions_in_process[frame_time] += 1
# # add it to the queue
# self.camera.resize_queue.put({
# 'camera_name': self.camera.name,
# 'frame_time': frame_time,
# 'region_id': -1,
# 'size': size,
# 'x_offset': x_offset,
# 'y_offset': y_offset
# })
# self.camera.dynamic_region_fps.update()
# look_again = True
# # if we are looking again, then this frame is not ready for processing
# if look_again:
# # remove the clipped objects
# self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
# continue
# # filter objects based on camera settings
# selected_objects = [o for o in selected_objects if not self.filtered(o)]
# self.camera.detected_objects[frame_time] = selected_objects
# # print(f"{frame_time} is actually finished")
# # keep adding frames to the refined queue as long as they are finished
# with self.camera.regions_in_process_lock:
# while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
# self.camera.last_processed_frame = self.camera.frame_queue.get()
# self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
# def filtered(self, obj):
# object_name = obj['name']
# if object_name in self.camera.object_filters:
# obj_settings = self.camera.object_filters[object_name]
# # if the min area is larger than the
# # detected object, don't add it to detected objects
# if obj_settings.get('min_area',-1) > obj['area']:
# return True
# # if the detected object is larger than the
# # max area, don't add it to detected objects
# if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
# return True
# # if the score is lower than the threshold, skip
# if obj_settings.get('threshold', 0) > obj['score']:
# return True
# # compute the coordinates of the object and make sure
# # the location isnt outside the bounds of the image (can happen from rounding)
# y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
# x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
# # if the object is in a masked location, don't add it to detected objects
# if self.camera.mask[y_location][x_location] == [0]:
# return True
# return False
# def has_overlap(self, new_obj, obj, overlap=.7):
# # compute intersection rectangle with existing object and new objects region
# existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
# # compute intersection rectangle with new object and existing objects region
# new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
# # compute iou for the two intersection rectangles that were just computed
# iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
# # if intersection is greater than overlap
# if iou > overlap:
# return True
# else:
# return False
# def find_group(self, new_obj, groups):
# for index, group in enumerate(groups):
# for obj in group:
# if self.has_overlap(new_obj, obj):
# return index
# return None
class ObjectTracker(): class ObjectTracker():
def __init__(self, max_disappeared): def __init__(self, max_disappeared):
self.tracked_objects = {} self.tracked_objects = {}
@ -385,45 +153,3 @@ class ObjectTracker():
else: else:
for col in unusedCols: for col in unusedCols:
self.register(col, group[col]) self.register(col, group[col])
# Maintains the frame and object with the highest score
# class BestFrames(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# self.best_objects = {}
# self.best_frames = {}
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# # wait until objects have been tracked
# with self.camera.objects_tracked:
# self.camera.objects_tracked.wait()
# # make a copy of tracked objects
# tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
# for obj in tracked_objects:
# if obj['name'] in self.best_objects:
# now = datetime.datetime.now().timestamp()
# # if the object is a higher score than the current best score
# # or the current object is more than 1 minute old, use the new object
# if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
# self.best_objects[obj['name']] = copy.deepcopy(obj)
# else:
# self.best_objects[obj['name']] = copy.deepcopy(obj)
# for name, obj in self.best_objects.items():
# if obj['frame_time'] in self.camera.frame_cache:
# best_frame = self.camera.frame_cache[obj['frame_time']]
# draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
# obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
# # print a timestamp
# if self.camera.snapshot_config['show_timestamp']:
# time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
# cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# self.best_frames[name] = best_frame

View File

@ -5,16 +5,6 @@ import cv2
import threading import threading
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'): def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None: if color is None:
color = (0,0,255) color = (0,0,255)
@ -117,10 +107,6 @@ def clipped(obj, frame_shape):
else: else:
return False return False
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
class EventsPerSecond: class EventsPerSecond:
def __init__(self, max_events=1000): def __init__(self, max_events=1000):
self._start = None self._start = None

View File

@ -11,43 +11,15 @@ import numpy as np
import hashlib import hashlib
import pyarrow.plasma as plasma import pyarrow.plasma as plasma
import SharedArray as sa import SharedArray as sa
# import prctl
import copy import copy
import itertools import itertools
import json import json
from collections import defaultdict from collections import defaultdict
from frigate.util import tonumpyarray, draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
# from frigate.object_detection import RegionPrepper, RegionRequester
from frigate.objects import ObjectTracker from frigate.objects import ObjectTracker
# from frigate.mqtt import MqttObjectPublisher
from frigate.edgetpu import RemoteObjectDetector from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector from frigate.motion import MotionDetector
# Stores 2 seconds worth of frames so they can be used for other threads
# TODO: we do actually know when these frames are no longer needed
# class FrameTracker(threading.Thread):
# def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
# threading.Thread.__init__(self)
# self.frame_time = frame_time
# self.frame_ready = frame_ready
# self.frame_lock = frame_lock
# self.recent_frames = recent_frames
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# # wait for a frame
# with self.frame_ready:
# self.frame_ready.wait()
# # delete any old frames
# stored_frame_times = list(self.recent_frames.keys())
# stored_frame_times.sort(reverse=True)
# if len(stored_frame_times) > 100:
# frames_to_delete = stored_frame_times[50:]
# for k in frames_to_delete:
# del self.recent_frames[k]
# TODO: add back opencv fallback # TODO: add back opencv fallback
def get_frame_shape(source): def get_frame_shape(source):
ffprobe_cmd = " ".join([ ffprobe_cmd = " ".join([
@ -302,22 +274,6 @@ class Camera:
self.capture_thread.join() self.capture_thread.join()
self.ffmpeg_process = None self.ffmpeg_process = None
self.capture_thread = None self.capture_thread = None
=======
# class CameraWatchdog(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# # wait a bit before checking
# time.sleep(10)
# if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > self.camera.watchdog_timeout:
# print(self.camera.name + ": last frame is more than 5 minutes old, restarting camera capture...")
# self.camera.start_or_restart_capture()
# time.sleep(5)
# # Thread to read the stdout of the ffmpeg process and update the current frame # # Thread to read the stdout of the ffmpeg process and update the current frame
# class CameraCapture(threading.Thread): # class CameraCapture(threading.Thread):
@ -518,7 +474,6 @@ class Camera:
# self.capture_thread.join() # self.capture_thread.join()
# self.ffmpeg_process = None # self.ffmpeg_process = None
# self.capture_thread = None # self.capture_thread = None
>>>>>>> 9b1c7e9... split into separate processes
# # create the process to capture frames from the input stream and store in a shared array # # create the process to capture frames from the input stream and store in a shared array
# print("Creating a new ffmpeg process...") # print("Creating a new ffmpeg process...")
@ -626,6 +581,8 @@ class Camera:
# return frame_bytes # return frame_bytes
=======
>>>>>>> 2a2fbe7... cleanup old code
def filtered(obj, objects_to_track, object_filters, mask): def filtered(obj, objects_to_track, object_filters, mask):
object_name = obj[0] object_name = obj[0]