wip: focus on dynamic region and delay drawing until viewing

This commit is contained in:
blakeblackshear 2019-02-01 21:38:13 -06:00
parent a976403edc
commit 11af9bb953

View File

@ -23,13 +23,17 @@ PATH_TO_LABELS = '/label_map.pbtext'
# TODO: make dynamic?
NUM_CLASSES = 90
REGION_SIZE = 700
REGION_X_OFFSET = 950
REGION_Y_OFFSET = 380
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def detect_objects(cropped_frame, full_frame, sess, detection_graph):
def detect_objects(cropped_frame, sess, detection_graph):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
@ -51,41 +55,11 @@ def detect_objects(cropped_frame, full_frame, sess, detection_graph):
# build an array of detected objects
objects = []
for index, value in enumerate(classes[0]):
object_dict = {}
if scores[0, index] > 0.1:
object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
scores[0, index]
objects.append(object_dict)
score = scores[0, index]
if score > 0.1:
objects += [value, scores[0, index]] + boxes[0, index].tolist()
squeezed_boxes = np.squeeze(boxes)
squeezed_scores = np.squeeze(scores)
full_frame_shape = full_frame.shape
cropped_frame_shape = cropped_frame.shape
if(len(objects)>0):
# reposition bounding box based on full frame
for i, box in enumerate(squeezed_boxes):
if box[2] > 0:
squeezed_boxes[i][0] = ((box[0] * cropped_frame_shape[0]) + 200)/full_frame_shape[0] # ymin
squeezed_boxes[i][1] = ((box[1] * cropped_frame_shape[0]) + 1300)/full_frame_shape[1] # xmin
squeezed_boxes[i][2] = ((box[2] * cropped_frame_shape[0]) + 200)/full_frame_shape[0] # ymax
squeezed_boxes[i][3] = ((box[3] * cropped_frame_shape[0]) + 1300)/full_frame_shape[1] # xmax
# draw boxes for detected objects on image
vis_util.visualize_boxes_and_labels_on_image_array(
full_frame,
squeezed_boxes,
np.squeeze(classes).astype(np.int32),
squeezed_scores,
category_index,
use_normalized_coordinates=True,
line_thickness=4,
min_score_thresh=.1)
# cv2.rectangle(full_frame, (800, 100), (1250, 550), (255,0,0), 2)
return objects, full_frame
return objects
def main():
# capture a single frame and check the frame shape so the correct array
@ -108,14 +82,13 @@ def main():
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
# create shared array for storing the full frame image data
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
# create shared array for storing the cropped frame image data
# TODO: make dynamic
shared_cropped_arr = mp.Array(ctypes.c_uint16, 300*300*3)
shared_cropped_arr = mp.Array(ctypes.c_uint16, REGION_SIZE*REGION_SIZE*3)
# create shared array for passing the image data from detect_objects to flask
shared_output_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# create a numpy array with the image shape from the shared memory array
# this is used by flask to output an mjpeg stream
frame_output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
shared_output_arr = mp.Array(ctypes.c_double, 6*10)
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape))
capture_process.daemon = True
@ -139,10 +112,23 @@ def main():
while True:
# max out at 5 FPS
time.sleep(0.2)
# convert back to BGR
# frame_bgr = cv2.cvtColor(frame_output_arr, cv2.COLOR_RGB2BGR)
frame = frame_arr.copy()
# draw the bounding boxes on the screen
object_index = 0
while(object_index < 60 and shared_output_arr[object_index] > 0):
object_class = shared_output_arr[object_index]
score = shared_output_arr[object_index+1]
ymin = int(((shared_output_arr[object_index+2] * REGION_SIZE) + REGION_Y_OFFSET))
xmin = int(((shared_output_arr[object_index+3] * REGION_SIZE) + REGION_X_OFFSET))
ymax = int(((shared_output_arr[object_index+4] * REGION_SIZE) + REGION_Y_OFFSET))
xmax = int(((shared_output_arr[object_index+5] * REGION_SIZE) + REGION_X_OFFSET))
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (255,0,0), 2)
object_index += 6
print(category_index.get(object_class).get('name').encode('utf8'), score)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame_output_arr)
cv2.rectangle(frame, (REGION_X_OFFSET, REGION_Y_OFFSET), (REGION_X_OFFSET+REGION_SIZE, REGION_Y_OFFSET+REGION_SIZE), (255,255,255), 2)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
@ -160,7 +146,7 @@ def tonumpyarray(mp_arr):
def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape):
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
cropped_frame = tonumpyarray(shared_cropped_arr).reshape(300,300,3)
cropped_frame = tonumpyarray(shared_cropped_arr).reshape(REGION_SIZE,REGION_SIZE,3)
# start the video capture
video = cv2.VideoCapture(RTSP_URL)
@ -185,7 +171,7 @@ def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape)
# Position 2
# frame_cropped = frame[270:720, 100:550]
# Car
cropped_frame[:] = frame[200:500, 1300:1600]
cropped_frame[:] = frame[REGION_Y_OFFSET:REGION_Y_OFFSET+REGION_SIZE, REGION_X_OFFSET:REGION_X_OFFSET+REGION_SIZE]
arr[:] = frame
# signal to the detection_process by setting the shared_frame_time
shared_frame_time.value = frame_time.timestamp()
@ -196,9 +182,7 @@ def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape)
def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
shared_cropped_frame = tonumpyarray(shared_cropped_arr).reshape(300,300,3)
# shape shared output array into frame so it can be copied into
output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
shared_cropped_frame = tonumpyarray(shared_cropped_arr).reshape(REGION_SIZE,REGION_SIZE,3)
# Load a (frozen) Tensorflow model into memory before the processing loop
detection_graph = tf.Graph()
@ -239,7 +223,7 @@ def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_fra
continue
# make a copy of the frame
frame = arr.copy()
# frame = arr.copy()
cropped_frame = shared_cropped_frame.copy()
frame_time = shared_frame_time.value
# signal that the frame has been used so a new one will be ready
@ -248,11 +232,9 @@ def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_fra
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# do the object detection
objects, frame_overlay = detect_objects(cropped_frame_rgb, frame, sess, detection_graph)
# copy the output frame with the bounding boxes to the output array
output_arr[:] = frame_overlay
if(len(objects) > 0):
print(objects)
objects = detect_objects(cropped_frame_rgb, sess, detection_graph)
# copy the detected objects to the output array, filling the array when needed
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
if __name__ == '__main__':
mp.freeze_support()