mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
wip: focus on dynamic region and delay drawing until viewing
This commit is contained in:
parent
a976403edc
commit
11af9bb953
@ -23,13 +23,17 @@ PATH_TO_LABELS = '/label_map.pbtext'
|
|||||||
# TODO: make dynamic?
|
# TODO: make dynamic?
|
||||||
NUM_CLASSES = 90
|
NUM_CLASSES = 90
|
||||||
|
|
||||||
|
REGION_SIZE = 700
|
||||||
|
REGION_X_OFFSET = 950
|
||||||
|
REGION_Y_OFFSET = 380
|
||||||
|
|
||||||
# Loading label map
|
# Loading label map
|
||||||
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
||||||
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
||||||
use_display_name=True)
|
use_display_name=True)
|
||||||
category_index = label_map_util.create_category_index(categories)
|
category_index = label_map_util.create_category_index(categories)
|
||||||
|
|
||||||
def detect_objects(cropped_frame, full_frame, sess, detection_graph):
|
def detect_objects(cropped_frame, sess, detection_graph):
|
||||||
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
||||||
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||||
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
||||||
@ -51,41 +55,11 @@ def detect_objects(cropped_frame, full_frame, sess, detection_graph):
|
|||||||
# build an array of detected objects
|
# build an array of detected objects
|
||||||
objects = []
|
objects = []
|
||||||
for index, value in enumerate(classes[0]):
|
for index, value in enumerate(classes[0]):
|
||||||
object_dict = {}
|
score = scores[0, index]
|
||||||
if scores[0, index] > 0.1:
|
if score > 0.1:
|
||||||
object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
|
objects += [value, scores[0, index]] + boxes[0, index].tolist()
|
||||||
scores[0, index]
|
|
||||||
objects.append(object_dict)
|
|
||||||
|
|
||||||
squeezed_boxes = np.squeeze(boxes)
|
return objects
|
||||||
squeezed_scores = np.squeeze(scores)
|
|
||||||
|
|
||||||
full_frame_shape = full_frame.shape
|
|
||||||
cropped_frame_shape = cropped_frame.shape
|
|
||||||
|
|
||||||
if(len(objects)>0):
|
|
||||||
# reposition bounding box based on full frame
|
|
||||||
for i, box in enumerate(squeezed_boxes):
|
|
||||||
if box[2] > 0:
|
|
||||||
squeezed_boxes[i][0] = ((box[0] * cropped_frame_shape[0]) + 200)/full_frame_shape[0] # ymin
|
|
||||||
squeezed_boxes[i][1] = ((box[1] * cropped_frame_shape[0]) + 1300)/full_frame_shape[1] # xmin
|
|
||||||
squeezed_boxes[i][2] = ((box[2] * cropped_frame_shape[0]) + 200)/full_frame_shape[0] # ymax
|
|
||||||
squeezed_boxes[i][3] = ((box[3] * cropped_frame_shape[0]) + 1300)/full_frame_shape[1] # xmax
|
|
||||||
|
|
||||||
# draw boxes for detected objects on image
|
|
||||||
vis_util.visualize_boxes_and_labels_on_image_array(
|
|
||||||
full_frame,
|
|
||||||
squeezed_boxes,
|
|
||||||
np.squeeze(classes).astype(np.int32),
|
|
||||||
squeezed_scores,
|
|
||||||
category_index,
|
|
||||||
use_normalized_coordinates=True,
|
|
||||||
line_thickness=4,
|
|
||||||
min_score_thresh=.1)
|
|
||||||
|
|
||||||
# cv2.rectangle(full_frame, (800, 100), (1250, 550), (255,0,0), 2)
|
|
||||||
|
|
||||||
return objects, full_frame
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# capture a single frame and check the frame shape so the correct array
|
# capture a single frame and check the frame shape so the correct array
|
||||||
@ -108,14 +82,13 @@ def main():
|
|||||||
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||||
# create shared array for storing the full frame image data
|
# create shared array for storing the full frame image data
|
||||||
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
||||||
|
# shape current frame so it can be treated as an image
|
||||||
|
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
# create shared array for storing the cropped frame image data
|
# create shared array for storing the cropped frame image data
|
||||||
# TODO: make dynamic
|
# TODO: make dynamic
|
||||||
shared_cropped_arr = mp.Array(ctypes.c_uint16, 300*300*3)
|
shared_cropped_arr = mp.Array(ctypes.c_uint16, REGION_SIZE*REGION_SIZE*3)
|
||||||
# create shared array for passing the image data from detect_objects to flask
|
# create shared array for passing the image data from detect_objects to flask
|
||||||
shared_output_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
shared_output_arr = mp.Array(ctypes.c_double, 6*10)
|
||||||
# create a numpy array with the image shape from the shared memory array
|
|
||||||
# this is used by flask to output an mjpeg stream
|
|
||||||
frame_output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
|
||||||
|
|
||||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape))
|
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape))
|
||||||
capture_process.daemon = True
|
capture_process.daemon = True
|
||||||
@ -139,10 +112,23 @@ def main():
|
|||||||
while True:
|
while True:
|
||||||
# max out at 5 FPS
|
# max out at 5 FPS
|
||||||
time.sleep(0.2)
|
time.sleep(0.2)
|
||||||
# convert back to BGR
|
frame = frame_arr.copy()
|
||||||
# frame_bgr = cv2.cvtColor(frame_output_arr, cv2.COLOR_RGB2BGR)
|
# draw the bounding boxes on the screen
|
||||||
|
object_index = 0
|
||||||
|
while(object_index < 60 and shared_output_arr[object_index] > 0):
|
||||||
|
object_class = shared_output_arr[object_index]
|
||||||
|
score = shared_output_arr[object_index+1]
|
||||||
|
ymin = int(((shared_output_arr[object_index+2] * REGION_SIZE) + REGION_Y_OFFSET))
|
||||||
|
xmin = int(((shared_output_arr[object_index+3] * REGION_SIZE) + REGION_X_OFFSET))
|
||||||
|
ymax = int(((shared_output_arr[object_index+4] * REGION_SIZE) + REGION_Y_OFFSET))
|
||||||
|
xmax = int(((shared_output_arr[object_index+5] * REGION_SIZE) + REGION_X_OFFSET))
|
||||||
|
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (255,0,0), 2)
|
||||||
|
object_index += 6
|
||||||
|
print(category_index.get(object_class).get('name').encode('utf8'), score)
|
||||||
# encode the image into a jpg
|
# encode the image into a jpg
|
||||||
ret, jpg = cv2.imencode('.jpg', frame_output_arr)
|
|
||||||
|
cv2.rectangle(frame, (REGION_X_OFFSET, REGION_Y_OFFSET), (REGION_X_OFFSET+REGION_SIZE, REGION_Y_OFFSET+REGION_SIZE), (255,255,255), 2)
|
||||||
|
ret, jpg = cv2.imencode('.jpg', frame)
|
||||||
yield (b'--frame\r\n'
|
yield (b'--frame\r\n'
|
||||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||||
|
|
||||||
@ -160,7 +146,7 @@ def tonumpyarray(mp_arr):
|
|||||||
def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape):
|
def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape):
|
||||||
# convert shared memory array into numpy and shape into image array
|
# convert shared memory array into numpy and shape into image array
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
cropped_frame = tonumpyarray(shared_cropped_arr).reshape(300,300,3)
|
cropped_frame = tonumpyarray(shared_cropped_arr).reshape(REGION_SIZE,REGION_SIZE,3)
|
||||||
|
|
||||||
# start the video capture
|
# start the video capture
|
||||||
video = cv2.VideoCapture(RTSP_URL)
|
video = cv2.VideoCapture(RTSP_URL)
|
||||||
@ -185,7 +171,7 @@ def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape)
|
|||||||
# Position 2
|
# Position 2
|
||||||
# frame_cropped = frame[270:720, 100:550]
|
# frame_cropped = frame[270:720, 100:550]
|
||||||
# Car
|
# Car
|
||||||
cropped_frame[:] = frame[200:500, 1300:1600]
|
cropped_frame[:] = frame[REGION_Y_OFFSET:REGION_Y_OFFSET+REGION_SIZE, REGION_X_OFFSET:REGION_X_OFFSET+REGION_SIZE]
|
||||||
arr[:] = frame
|
arr[:] = frame
|
||||||
# signal to the detection_process by setting the shared_frame_time
|
# signal to the detection_process by setting the shared_frame_time
|
||||||
shared_frame_time.value = frame_time.timestamp()
|
shared_frame_time.value = frame_time.timestamp()
|
||||||
@ -196,9 +182,7 @@ def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape)
|
|||||||
def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape):
|
def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape):
|
||||||
# shape shared input array into frame for processing
|
# shape shared input array into frame for processing
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
shared_cropped_frame = tonumpyarray(shared_cropped_arr).reshape(300,300,3)
|
shared_cropped_frame = tonumpyarray(shared_cropped_arr).reshape(REGION_SIZE,REGION_SIZE,3)
|
||||||
# shape shared output array into frame so it can be copied into
|
|
||||||
output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
|
||||||
|
|
||||||
# Load a (frozen) Tensorflow model into memory before the processing loop
|
# Load a (frozen) Tensorflow model into memory before the processing loop
|
||||||
detection_graph = tf.Graph()
|
detection_graph = tf.Graph()
|
||||||
@ -239,7 +223,7 @@ def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_fra
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
# make a copy of the frame
|
# make a copy of the frame
|
||||||
frame = arr.copy()
|
# frame = arr.copy()
|
||||||
cropped_frame = shared_cropped_frame.copy()
|
cropped_frame = shared_cropped_frame.copy()
|
||||||
frame_time = shared_frame_time.value
|
frame_time = shared_frame_time.value
|
||||||
# signal that the frame has been used so a new one will be ready
|
# signal that the frame has been used so a new one will be ready
|
||||||
@ -248,11 +232,9 @@ def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_fra
|
|||||||
# convert to RGB
|
# convert to RGB
|
||||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||||
# do the object detection
|
# do the object detection
|
||||||
objects, frame_overlay = detect_objects(cropped_frame_rgb, frame, sess, detection_graph)
|
objects = detect_objects(cropped_frame_rgb, sess, detection_graph)
|
||||||
# copy the output frame with the bounding boxes to the output array
|
# copy the detected objects to the output array, filling the array when needed
|
||||||
output_arr[:] = frame_overlay
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
||||||
if(len(objects) > 0):
|
|
||||||
print(objects)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
mp.freeze_support()
|
mp.freeze_support()
|
||||||
|
Loading…
Reference in New Issue
Block a user