only convert pix_fmt when necessary

This commit is contained in:
Blake Blackshear 2020-10-10 21:28:12 -05:00
parent a611cbb942
commit 12c4cd77c5
4 changed files with 42 additions and 12 deletions

View File

@ -375,6 +375,8 @@ def main():
best_object = object_processor.get_best(camera_name, label) best_object = object_processor.get_best(camera_name, label)
best_frame = best_object.get('frame', np.zeros((720,1280,3), np.uint8)) best_frame = best_object.get('frame', np.zeros((720,1280,3), np.uint8))
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get('crop', 0, type=int)) crop = bool(request.args.get('crop', 0, type=int))
if crop: if crop:
region = best_object.get('region', [0,0,300,300]) region = best_object.get('region', [0,0,300,300])
@ -384,7 +386,6 @@ def main():
width = int(height*best_frame.shape[1]/best_frame.shape[0]) width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA) best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame) ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes()) response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg' response.headers['Content-Type'] = 'image/jpg'
@ -411,11 +412,12 @@ def main():
if frame is None: if frame is None:
frame = np.zeros((720,1280,3), np.uint8) frame = np.zeros((720,1280,3), np.uint8)
frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
height = int(request.args.get('h', str(frame.shape[0]))) height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0]) width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA) frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', frame) ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes()) response = make_response(jpg.tobytes())
@ -432,10 +434,10 @@ def main():
if frame is None: if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8) frame = np.zeros((height,int(height*16/9),3), np.uint8)
width = int(height*frame.shape[1]/frame.shape[0]) frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR) frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', frame) ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n' yield (b'--frame\r\n'

View File

@ -260,7 +260,7 @@ class TrackedObjectProcessor(threading.Thread):
def snapshot(camera, obj): def snapshot(camera, obj):
if not 'frame' in obj: if not 'frame' in obj:
return return
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_RGB2BGR) best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_YUV2BGR_I420)
mqtt_config = self.camera_config[camera].get('mqtt', {'crop_to_region': False}) mqtt_config = self.camera_config[camera].get('mqtt', {'crop_to_region': False})
if mqtt_config.get('crop_to_region'): if mqtt_config.get('crop_to_region'):
region = obj['region'] region = obj['region']

View File

@ -70,6 +70,37 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
return (x_offset, y_offset, x_offset+size, y_offset+size) return (x_offset, y_offset, x_offset+size, y_offset+size)
def yuv_region_2_rgb(frame, region):
height = frame.shape[0]//3*2
width = frame.shape[1]
# make sure the size is a multiple of 4
size = (region[3] - region[1])//4*4
x1 = region[0]
y1 = region[1]
uv_x1 = x1//2
uv_y1 = y1//4
uv_width = size//2
uv_height = size//4
u_y_start = height
v_y_start = height + height//4
two_x_offset = width//2
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
# y channel
yuv_cropped_frame[0:size, 0:size] = frame[y1:y1+size, x1:x1+size]
# u channel
yuv_cropped_frame[size:size+uv_height, 0:uv_width] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1:uv_x1+uv_width]
yuv_cropped_frame[size:size+uv_height, uv_width:size] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
# v channel
yuv_cropped_frame[size+uv_height:size+uv_height*2, 0:uv_width] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1:uv_x1+uv_width]
yuv_cropped_frame[size+uv_height:size+uv_height*2, uv_width:size] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
def intersection(box_a, box_b): def intersection(box_a, box_b):
return ( return (
max(box_a[0], box_b[0]), max(box_a[0], box_b[0]),

View File

@ -14,7 +14,7 @@ import json
import base64 import base64
from typing import Dict, List from typing import Dict, List
from collections import defaultdict from collections import defaultdict
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, FrameManager, SharedMemoryFrameManager from frigate.util import draw_box_with_label, yuv_region_2_rgb, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, FrameManager, SharedMemoryFrameManager
from frigate.objects import ObjectTracker from frigate.objects import ObjectTracker
from frigate.edgetpu import RemoteObjectDetector from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector from frigate.motion import MotionDetector
@ -88,7 +88,7 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
return False return False
def create_tensor_input(frame, region): def create_tensor_input(frame, region):
cropped_frame = frame[region[1]:region[3], region[0]:region[2]] cropped_frame = yuv_region_2_rgb(frame, region)
# Resize to 300x300 if needed # Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3): if cropped_frame.shape != (300, 300, 3):
@ -304,13 +304,10 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0) regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
for a in combined_regions] for a in combined_regions]
if len(regions) > 0:
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
# resize regions and detect # resize regions and detect
detections = [] detections = []
for region in regions: for region in regions:
detections.extend(detect(object_detector, rgb_frame, region, objects_to_track, object_filters, mask)) detections.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
######### #########
# merge objects, check for clipped objects and look again up to 4 times # merge objects, check for clipped objects and look again up to 4 times
@ -343,7 +340,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
box[0], box[1], box[0], box[1],
box[2], box[3]) box[2], box[3])
selected_objects.extend(detect(object_detector, rgb_frame, region, objects_to_track, object_filters, mask)) selected_objects.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
refining = True refining = True
else: else: