mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
Refactor attribute saving (#14090)
* Refactor attribute saving * Ensure sub label is not overwritten * Formatting * Fix unused
This commit is contained in:
parent
594ca3a04b
commit
15fa55c223
@ -108,7 +108,12 @@ def is_better_thumbnail(label, current_thumb, new_obj, frame_shape) -> bool:
|
|||||||
|
|
||||||
class TrackedObject:
|
class TrackedObject:
|
||||||
def __init__(
|
def __init__(
|
||||||
self, camera, colormap, camera_config: CameraConfig, frame_cache, obj_data
|
self,
|
||||||
|
camera,
|
||||||
|
colormap,
|
||||||
|
camera_config: CameraConfig,
|
||||||
|
frame_cache,
|
||||||
|
obj_data: dict[str, any],
|
||||||
):
|
):
|
||||||
# set the score history then remove as it is not part of object state
|
# set the score history then remove as it is not part of object state
|
||||||
self.score_history = obj_data["score_history"]
|
self.score_history = obj_data["score_history"]
|
||||||
@ -227,8 +232,8 @@ class TrackedObject:
|
|||||||
if self.attributes[attr["label"]] < attr["score"]:
|
if self.attributes[attr["label"]] < attr["score"]:
|
||||||
self.attributes[attr["label"]] = attr["score"]
|
self.attributes[attr["label"]] = attr["score"]
|
||||||
|
|
||||||
# populate the sub_label for car with highest scoring logo
|
# populate the sub_label for object with highest scoring logo
|
||||||
if self.obj_data["label"] == "car":
|
if self.obj_data["label"] in ["car", "package", "person"]:
|
||||||
recognized_logos = {
|
recognized_logos = {
|
||||||
k: self.attributes[k]
|
k: self.attributes[k]
|
||||||
for k in ["ups", "fedex", "amazon"]
|
for k in ["ups", "fedex", "amazon"]
|
||||||
@ -236,7 +241,13 @@ class TrackedObject:
|
|||||||
}
|
}
|
||||||
if len(recognized_logos) > 0:
|
if len(recognized_logos) > 0:
|
||||||
max_logo = max(recognized_logos, key=recognized_logos.get)
|
max_logo = max(recognized_logos, key=recognized_logos.get)
|
||||||
self.obj_data["sub_label"] = (max_logo, recognized_logos[max_logo])
|
|
||||||
|
# don't overwrite sub label if it is already set
|
||||||
|
if (
|
||||||
|
self.obj_data.get("sub_label") is None
|
||||||
|
or self.obj_data["sub_label"][0] == max_logo
|
||||||
|
):
|
||||||
|
self.obj_data["sub_label"] = (max_logo, recognized_logos[max_logo])
|
||||||
|
|
||||||
# check for significant change
|
# check for significant change
|
||||||
if not self.false_positive:
|
if not self.false_positive:
|
||||||
|
50
frigate/test/test_obects.py
Normal file
50
frigate/test/test_obects.py
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
import unittest
|
||||||
|
|
||||||
|
from frigate.track.object_attribute import ObjectAttribute
|
||||||
|
|
||||||
|
|
||||||
|
class TestAttribute(unittest.TestCase):
|
||||||
|
def test_overlapping_object_selection(self) -> None:
|
||||||
|
attribute = ObjectAttribute(
|
||||||
|
(
|
||||||
|
"amazon",
|
||||||
|
0.80078125,
|
||||||
|
(847, 242, 883, 255),
|
||||||
|
468,
|
||||||
|
2.769230769230769,
|
||||||
|
(702, 134, 1050, 482),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
objects = [
|
||||||
|
{
|
||||||
|
"label": "car",
|
||||||
|
"score": 0.98828125,
|
||||||
|
"box": (728, 223, 1266, 719),
|
||||||
|
"area": 266848,
|
||||||
|
"ratio": 1.0846774193548387,
|
||||||
|
"region": (349, 0, 1397, 1048),
|
||||||
|
"frame_time": 1727785394.498972,
|
||||||
|
"centroid": (997, 471),
|
||||||
|
"id": "1727785349.150633-408hal",
|
||||||
|
"start_time": 1727785349.150633,
|
||||||
|
"motionless_count": 362,
|
||||||
|
"position_changes": 0,
|
||||||
|
"score_history": [0.98828125, 0.95703125, 0.98828125, 0.98828125],
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"label": "person",
|
||||||
|
"score": 0.76953125,
|
||||||
|
"box": (826, 172, 939, 417),
|
||||||
|
"area": 27685,
|
||||||
|
"ratio": 0.46122448979591835,
|
||||||
|
"region": (702, 134, 1050, 482),
|
||||||
|
"frame_time": 1727785394.498972,
|
||||||
|
"centroid": (882, 294),
|
||||||
|
"id": "1727785390.499768-9fbhem",
|
||||||
|
"start_time": 1727785390.499768,
|
||||||
|
"motionless_count": 2,
|
||||||
|
"position_changes": 1,
|
||||||
|
"score_history": [0.8828125, 0.83984375, 0.91796875, 0.94140625],
|
||||||
|
},
|
||||||
|
]
|
||||||
|
assert attribute.find_best_object(objects) == "1727785390.499768-9fbhem"
|
44
frigate/track/object_attribute.py
Normal file
44
frigate/track/object_attribute.py
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
"""Object attribute."""
|
||||||
|
|
||||||
|
from frigate.util.object import area, box_inside
|
||||||
|
|
||||||
|
|
||||||
|
class ObjectAttribute:
|
||||||
|
def __init__(self, raw_data: tuple) -> None:
|
||||||
|
self.label = raw_data[0]
|
||||||
|
self.score = raw_data[1]
|
||||||
|
self.box = raw_data[2]
|
||||||
|
self.area = raw_data[3]
|
||||||
|
self.ratio = raw_data[4]
|
||||||
|
self.region = raw_data[5]
|
||||||
|
|
||||||
|
def get_tracking_data(self) -> dict[str, any]:
|
||||||
|
"""Return data saved to the object."""
|
||||||
|
return {
|
||||||
|
"label": self.label,
|
||||||
|
"score": self.score,
|
||||||
|
"box": self.box,
|
||||||
|
}
|
||||||
|
|
||||||
|
def find_best_object(self, objects: list[dict[str, any]]) -> str:
|
||||||
|
"""Find the best attribute for each object and return its ID."""
|
||||||
|
best_object_area = None
|
||||||
|
best_object_id = None
|
||||||
|
|
||||||
|
for obj in objects:
|
||||||
|
if not box_inside(obj["box"], self.box):
|
||||||
|
continue
|
||||||
|
|
||||||
|
object_area = area(obj["box"])
|
||||||
|
|
||||||
|
# if multiple objects have the same attribute then they
|
||||||
|
# are overlapping, it is most likely that the smaller object
|
||||||
|
# is the one with the attribute
|
||||||
|
if best_object_area is None:
|
||||||
|
best_object_area = object_area
|
||||||
|
best_object_id = obj["id"]
|
||||||
|
elif object_area < best_object_area:
|
||||||
|
best_object_area = object_area
|
||||||
|
best_object_id = obj["id"]
|
||||||
|
|
||||||
|
return best_object_id
|
@ -27,6 +27,7 @@ from frigate.object_detection import RemoteObjectDetector
|
|||||||
from frigate.ptz.autotrack import ptz_moving_at_frame_time
|
from frigate.ptz.autotrack import ptz_moving_at_frame_time
|
||||||
from frigate.track import ObjectTracker
|
from frigate.track import ObjectTracker
|
||||||
from frigate.track.norfair_tracker import NorfairTracker
|
from frigate.track.norfair_tracker import NorfairTracker
|
||||||
|
from frigate.track.object_attribute import ObjectAttribute
|
||||||
from frigate.util.builtin import EventsPerSecond, get_tomorrow_at_time
|
from frigate.util.builtin import EventsPerSecond, get_tomorrow_at_time
|
||||||
from frigate.util.image import (
|
from frigate.util.image import (
|
||||||
FrameManager,
|
FrameManager,
|
||||||
@ -34,7 +35,6 @@ from frigate.util.image import (
|
|||||||
draw_box_with_label,
|
draw_box_with_label,
|
||||||
)
|
)
|
||||||
from frigate.util.object import (
|
from frigate.util.object import (
|
||||||
box_inside,
|
|
||||||
create_tensor_input,
|
create_tensor_input,
|
||||||
get_cluster_candidates,
|
get_cluster_candidates,
|
||||||
get_cluster_region,
|
get_cluster_region,
|
||||||
@ -734,29 +734,32 @@ def process_frames(
|
|||||||
object_tracker.update_frame_times(frame_time)
|
object_tracker.update_frame_times(frame_time)
|
||||||
|
|
||||||
# group the attribute detections based on what label they apply to
|
# group the attribute detections based on what label they apply to
|
||||||
attribute_detections = {}
|
attribute_detections: dict[str, ObjectAttribute] = {}
|
||||||
for label, attribute_labels in model_config.attributes_map.items():
|
for label, attribute_labels in model_config.attributes_map.items():
|
||||||
attribute_detections[label] = [
|
attribute_detections[label] = [
|
||||||
d for d in consolidated_detections if d[0] in attribute_labels
|
ObjectAttribute(d)
|
||||||
|
for d in consolidated_detections
|
||||||
|
if d[0] in attribute_labels
|
||||||
]
|
]
|
||||||
|
|
||||||
# build detections and add attributes
|
# build detections
|
||||||
detections = {}
|
detections = {}
|
||||||
for obj in object_tracker.tracked_objects.values():
|
for obj in object_tracker.tracked_objects.values():
|
||||||
attributes = []
|
detections[obj["id"]] = {**obj, "attributes": []}
|
||||||
# if the objects label has associated attribute detections
|
|
||||||
if obj["label"] in attribute_detections.keys():
|
# find the best object for each attribute to be assigned to
|
||||||
# add them to attributes if they intersect
|
all_objects: list[dict[str, any]] = object_tracker.tracked_objects.values()
|
||||||
for attribute_detection in attribute_detections[obj["label"]]:
|
for attributes in attribute_detections.values():
|
||||||
if box_inside(obj["box"], (attribute_detection[2])):
|
for attribute in attributes:
|
||||||
attributes.append(
|
filtered_objects = filter(
|
||||||
{
|
lambda o: o["label"] in attribute_detections.keys(), all_objects
|
||||||
"label": attribute_detection[0],
|
)
|
||||||
"score": attribute_detection[1],
|
selected_object_id = attribute.find_best_object(filtered_objects)
|
||||||
"box": attribute_detection[2],
|
|
||||||
}
|
if selected_object_id is not None:
|
||||||
)
|
detections[selected_object_id]["attributes"].append(
|
||||||
detections[obj["id"]] = {**obj, "attributes": attributes}
|
attribute.get_tracking_data()
|
||||||
|
)
|
||||||
|
|
||||||
# debug object tracking
|
# debug object tracking
|
||||||
if False:
|
if False:
|
||||||
|
Loading…
Reference in New Issue
Block a user