diff --git a/benchmark.py b/benchmark.py
index a8c6ff2cb..b74f82f27 100755
--- a/benchmark.py
+++ b/benchmark.py
@@ -1,18 +1,79 @@
-import statistics
+import os
+from statistics import mean
+import multiprocessing as mp
 import numpy as np
-import time
-from frigate.edgetpu import ObjectDetector
+import datetime
+from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
 
-object_detector = ObjectDetector()
+my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
+labels = load_labels('/labelmap.txt')
 
-frame = np.zeros((300,300,3), np.uint8)
-input_frame = np.expand_dims(frame, axis=0)
+######
+# Minimal same process runner
+######
+# object_detector = ObjectDetector()
+# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
 
-detection_times = []
+# start = datetime.datetime.now().timestamp()
 
-for x in range(0, 100):
-    start = time.monotonic()
-    object_detector.detect_raw(input_frame)
-    detection_times.append(time.monotonic()-start)
+# frame_times = []
+# for x in range(0, 1000):
+#   start_frame = datetime.datetime.now().timestamp()
 
-print(f"Average inference time: {statistics.mean(detection_times)*1000:.2f}ms")
\ No newline at end of file
+#   tensor_input[:] = my_frame
+#   detections = object_detector.detect_raw(tensor_input)
+#   parsed_detections = []
+#   for d in detections:
+#       if d[1] < 0.4:
+#           break
+#       parsed_detections.append((
+#           labels[int(d[0])],
+#           float(d[1]),
+#           (d[2], d[3], d[4], d[5])
+#       ))
+#   frame_times.append(datetime.datetime.now().timestamp()-start_frame)
+
+# duration = datetime.datetime.now().timestamp()-start
+# print(f"Processed for {duration:.2f} seconds.")
+# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
+
+######
+# Separate process runner
+######
+def start(id, num_detections, detection_queue):
+  object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
+  start = datetime.datetime.now().timestamp()
+
+  frame_times = []
+  for x in range(0, num_detections):
+    start_frame = datetime.datetime.now().timestamp()
+    detections = object_detector.detect(my_frame)
+    frame_times.append(datetime.datetime.now().timestamp()-start_frame)
+
+  duration = datetime.datetime.now().timestamp()-start
+  print(f"{id} - Processed for {duration:.2f} seconds.")
+  print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
+
+edgetpu_process = EdgeTPUProcess()
+
+# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
+
+####
+# Multiple camera processes
+####
+camera_processes = []
+for x in range(0, 10):
+  camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
+  camera_process.daemon = True
+  camera_processes.append(camera_process)
+
+start = datetime.datetime.now().timestamp()
+
+for p in camera_processes:
+  p.start()
+
+for p in camera_processes:
+  p.join()
+
+duration = datetime.datetime.now().timestamp()-start
+print(f"Total - Processed for {duration:.2f} seconds.")
\ No newline at end of file