Support RF-DETR models with OpenVINO (#17321)

* Add support for openvino to run rf-detr models

* Add more inference time examples

* organize

* Add example to docs

* Add support for yolo generic
This commit is contained in:
Nicolas Mowen 2025-03-23 14:02:16 -06:00 committed by GitHub
parent fa4643fddf
commit 18af06237c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 74 additions and 32 deletions

View File

@ -340,6 +340,33 @@ model:
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
#### RF-DETR
[RF-DETR](https://github.com/roboflow/rf-detr) is a DETR based model. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-rf-detr-model) for more informatoin on downloading the RF-DETR model for use in Frigate.
:::warning
Due to the size and complexity of the RF-DETR model, it is only recommended to be run with discrete Arc Graphics Cards.
:::
After placing the downloaded onnx model in your `config/model_cache` folder, you can use the following configuration:
```yaml
detectors:
ov:
type: openvino
device: GPU
model:
model_type: rfdetr
width: 560
height: 560
input_tensor: nchw
input_dtype: float
path: /config/model_cache/rfdetr.onnx
```
#### D-FINE
[D-FINE](https://github.com/Peterande/D-FINE) is a DETR based model. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-d-fine-model) for more information on downloading the D-FINE model for use in Frigate.

View File

@ -40,7 +40,7 @@ Frigate supports multiple different detectors that work on different types of ha
- [Hailo](#hailo-8): The Hailo8 and Hailo8L AI Acceleration module is available in m.2 format with a HAT for RPi devices offering a wide range of compatibility with devices.
- [Supports many model architectures](../../configuration/object_detectors#configuration)
- Runs best with tiny or small size models
- [Google Coral EdgeTPU](#google-coral-tpu): The Google Coral EdgeTPU is available in USB and m.2 format allowing for a wide range of compatibility with devices.
- [Supports primarily ssdlite and mobilenet model architectures](../../configuration/object_detectors#edge-tpu-detector)
@ -89,7 +89,7 @@ In real-world deployments, even with multiple cameras running concurrently, Frig
### Google Coral TPU
Frigate supports both the USB and M.2 versions of the Google Coral.
Frigate supports both the USB and M.2 versions of the Google Coral.
- The USB version is compatible with the widest variety of hardware and does not require a driver on the host machine. However, it does lack the automatic throttling features of the other versions.
- The PCIe and M.2 versions require installation of a driver on the host. Follow the instructions for your version from https://coral.ai
@ -107,23 +107,19 @@ More information is available [in the detector docs](/configuration/object_detec
Inference speeds vary greatly depending on the CPU or GPU used, some known examples of GPU inference times are below:
| Name | MobileNetV2 Inference Time | YOLO-NAS Inference Time | Notes |
| -------------------- | -------------------------- | ------------------------- | -------------------------------------- |
| Intel Celeron J4105 | ~ 25 ms | | Can only run one detector instance |
| Intel Celeron N3060 | 130 - 150 ms | | Can only run one detector instance |
| Intel Celeron N3205U | ~ 120 ms | | Can only run one detector instance |
| Intel Celeron N4020 | 50 - 200 ms | | Inference speed depends on other loads |
| Intel i3 6100T | 15 - 35 ms | | Can only run one detector instance |
| Intel i3 8100 | ~ 15 ms | | |
| Intel i5 4590 | ~ 20 ms | | |
| Intel i5 6500 | ~ 15 ms | | |
| Intel i5 7200u | 15 - 25 ms | | |
| Intel i5 7500 | ~ 15 ms | | |
| Intel i5 1135G7 | 10 - 15 ms | | |
| Intel i3 12000 | | 320: ~ 19 ms 640: ~ 54 ms | |
| Intel i5 12600K | ~ 15 ms | 320: ~ 20 ms 640: ~ 46 ms | |
| Intel Arc A380 | ~ 6 ms | 320: ~ 10 ms | |
| Intel Arc A750 | ~ 4 ms | 320: ~ 8 ms | |
| Name | MobileNetV2 Inference Time | YOLO-NAS Inference Time | RF-DETR Inference Time | Notes |
| -------------------- | -------------------------- | ------------------------- | ------------------------- | -------------------------------------- |
| Intel i3 6100T | 15 - 35 ms | | | Can only run one detector instance |
| Intel i5 6500 | ~ 15 ms | | | |
| Intel i5 7200u | 15 - 25 ms | | | |
| Intel i5 7500 | ~ 15 ms | | | |
| Intel i3 8100 | ~ 15 ms | | | |
| Intel i5 1135G7 | 10 - 15 ms | | | |
| Intel i3 12000 | | 320: ~ 19 ms 640: ~ 54 ms | | |
| Intel i5 12600K | ~ 15 ms | 320: ~ 20 ms 640: ~ 46 ms | | |
| Intel i7 12650H | ~ 15 ms | 320: ~ 20 ms 640: ~ 42 ms | 336: 50 ms | |
| Intel Arc A380 | ~ 6 ms | 320: ~ 10 ms | | |
| Intel Arc A750 | ~ 4 ms | 320: ~ 8 ms | | |
### TensorRT - Nvidia GPU
@ -132,15 +128,15 @@ The TensortRT detector is able to run on x86 hosts that have an Nvidia GPU which
Inference speeds will vary greatly depending on the GPU and the model used.
`tiny` variants are faster than the equivalent non-tiny model, some known examples are below:
| Name | YoloV7 Inference Time | YOLO-NAS Inference Time |
| --------------- | --------------------- | ------------------------- |
| GTX 1060 6GB | ~ 7 ms | |
| GTX 1070 | ~ 6 ms | |
| GTX 1660 SUPER | ~ 4 ms | |
| RTX 3050 | 5 - 7 ms | 320: ~ 10 ms 640: ~ 16 ms |
| RTX 3070 Mobile | ~ 5 ms | |
| Quadro P400 2GB | 20 - 25 ms | |
| Quadro P2000 | ~ 12 ms | |
| Name | YoloV7 Inference Time | YOLO-NAS Inference Time | RF-DETR Inference Time |
| --------------- | --------------------- | ------------------------- | ------------------------- |
| GTX 1060 6GB | ~ 7 ms | | |
| GTX 1070 | ~ 6 ms | | |
| GTX 1660 SUPER | ~ 4 ms | | |
| RTX 3050 | 5 - 7 ms | 320: ~ 10 ms 640: ~ 16 ms | 336: ~ 16 ms 560: ~ 40 ms |
| RTX 3070 Mobile | ~ 5 ms | | |
| Quadro P400 2GB | 20 - 25 ms | | |
| Quadro P2000 | ~ 12 ms | | |
### AMD GPUs

View File

@ -97,7 +97,10 @@ class ONNXDetector(DetectionApi):
x_max / self.w,
]
return detections
elif self.onnx_model_type == ModelTypeEnum.yolov9:
elif (
self.onnx_model_type == ModelTypeEnum.yolov9
or self.onnx_model_type == ModelTypeEnum.yologeneric
):
predictions: np.ndarray = tensor_output[0]
return post_process_yolov9(predictions, self.w, self.h)
else:

View File

@ -10,7 +10,11 @@ from typing_extensions import Literal
from frigate.const import MODEL_CACHE_DIR
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
from frigate.util.model import post_process_dfine, post_process_yolov9
from frigate.util.model import (
post_process_dfine,
post_process_rfdetr,
post_process_yolov9,
)
logger = logging.getLogger(__name__)
@ -25,11 +29,13 @@ class OvDetectorConfig(BaseDetectorConfig):
class OvDetector(DetectionApi):
type_key = DETECTOR_KEY
supported_models = [
ModelTypeEnum.dfine,
ModelTypeEnum.rfdetr,
ModelTypeEnum.ssd,
ModelTypeEnum.yolonas,
ModelTypeEnum.yolov9,
ModelTypeEnum.yologeneric,
ModelTypeEnum.yolox,
ModelTypeEnum.dfine,
]
def __init__(self, detector_config: OvDetectorConfig):
@ -185,6 +191,13 @@ class OvDetector(DetectionApi):
if self.model_invalid:
return detections
elif self.ov_model_type == ModelTypeEnum.rfdetr:
return post_process_rfdetr(
[
infer_request.get_output_tensor(0).data,
infer_request.get_output_tensor(1).data,
]
)
elif self.ov_model_type == ModelTypeEnum.ssd:
results = infer_request.get_output_tensor(0).data[0][0]
@ -219,7 +232,10 @@ class OvDetector(DetectionApi):
x_max / self.w,
]
return detections
elif self.ov_model_type == ModelTypeEnum.yolov9:
elif (
self.ov_model_type == ModelTypeEnum.yolov9
or self.ov_model_type == ModelTypeEnum.yologeneric
):
out_tensor = infer_request.get_output_tensor(0).data
return post_process_yolov9(out_tensor, self.w, self.h)
elif self.ov_model_type == ModelTypeEnum.yolox: