mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-26 00:06:32 +01:00
removing motion detection
This commit is contained in:
parent
48aa245914
commit
200d769003
@ -37,22 +37,16 @@ DEBUG = (os.getenv('DEBUG') == '1')
|
||||
|
||||
def main():
|
||||
DETECTED_OBJECTS = []
|
||||
recent_motion_frames = {}
|
||||
recent_frames = {}
|
||||
# Parse selected regions
|
||||
regions = []
|
||||
for region_string in REGIONS.split(':'):
|
||||
region_parts = region_string.split(',')
|
||||
region_mask_image = cv2.imread("/config/{}".format(region_parts[5]), cv2.IMREAD_GRAYSCALE)
|
||||
region_mask = np.where(region_mask_image==[0])
|
||||
regions.append({
|
||||
'size': int(region_parts[0]),
|
||||
'x_offset': int(region_parts[1]),
|
||||
'y_offset': int(region_parts[2]),
|
||||
'min_person_area': int(region_parts[3]),
|
||||
'min_object_size': int(region_parts[4]),
|
||||
'mask': region_mask,
|
||||
# Event for motion detection signaling
|
||||
'motion_detected': mp.Event(),
|
||||
# array for prepped frame with shape (1, 300, 300, 3)
|
||||
'prepped_frame_array': mp.Array(ctypes.c_uint8, 300*300*3),
|
||||
# shared value for storing the prepped_frame_time
|
||||
@ -81,14 +75,13 @@ def main():
|
||||
frame_lock = mp.Lock()
|
||||
# Condition for notifying that a new frame is ready
|
||||
frame_ready = mp.Condition()
|
||||
# Condition for notifying that motion status changed globally
|
||||
motion_changed = mp.Condition()
|
||||
|
||||
# Shared memory array for passing prepped frame to tensorflow
|
||||
prepped_frame_array = mp.Array(ctypes.c_uint8, 300*300*3)
|
||||
# create shared value for storing the frame_time
|
||||
prepped_frame_time = mp.Value('d', 0.0)
|
||||
# Event for notifying that object detection needs a new frame
|
||||
prepped_frame_grabbed = mp.Event()
|
||||
# Event for notifying that new frame is ready for detection
|
||||
prepped_frame_ready = mp.Event()
|
||||
# Condition for notifying that objects were parsed
|
||||
objects_parsed = mp.Condition()
|
||||
@ -96,6 +89,7 @@ def main():
|
||||
object_queue = mp.Queue()
|
||||
# Queue for prepped frames
|
||||
prepped_frame_queue = queue.Queue(len(regions)*2)
|
||||
# Array for passing original region box to compute object bounding box
|
||||
prepped_frame_box = mp.Array(ctypes.c_uint16, 3)
|
||||
|
||||
# shape current frame so it can be treated as an image
|
||||
@ -106,32 +100,18 @@ def main():
|
||||
shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
|
||||
capture_process.daemon = True
|
||||
|
||||
# for each region, start a separate process for motion detection and object detection
|
||||
# for each region, start a separate thread to resize the region and prep for detection
|
||||
detection_prep_threads = []
|
||||
motion_processes = []
|
||||
for region in regions:
|
||||
detection_prep_threads.append(FramePrepper(
|
||||
frame_arr,
|
||||
shared_frame_time,
|
||||
frame_ready,
|
||||
frame_lock,
|
||||
region['motion_detected'],
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
prepped_frame_queue
|
||||
))
|
||||
|
||||
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
||||
shared_frame_time,
|
||||
frame_lock, frame_ready,
|
||||
region['motion_detected'],
|
||||
motion_changed,
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
region['min_object_size'], region['mask'],
|
||||
DEBUG))
|
||||
motion_process.daemon = True
|
||||
motion_processes.append(motion_process)
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
prepped_frame_array,
|
||||
prepped_frame_time,
|
||||
@ -157,24 +137,22 @@ def main():
|
||||
|
||||
# start a thread to store recent motion frames for processing
|
||||
frame_tracker = FrameTracker(frame_arr, shared_frame_time, frame_ready, frame_lock,
|
||||
recent_motion_frames, motion_changed, [region['motion_detected'] for region in regions])
|
||||
recent_frames)
|
||||
frame_tracker.start()
|
||||
|
||||
# start a thread to store the highest scoring recent person frame
|
||||
best_person_frame = BestPersonFrame(objects_parsed, recent_motion_frames, DETECTED_OBJECTS,
|
||||
motion_changed, [region['motion_detected'] for region in regions])
|
||||
best_person_frame = BestPersonFrame(objects_parsed, recent_frames, DETECTED_OBJECTS)
|
||||
best_person_frame.start()
|
||||
|
||||
# start a thread to parse objects from the queue
|
||||
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS)
|
||||
object_parser.start()
|
||||
# start a thread to expire objects from the detected objects list
|
||||
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS,
|
||||
motion_changed, [region['motion_detected'] for region in regions])
|
||||
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS)
|
||||
object_cleaner.start()
|
||||
|
||||
# connect to mqtt and setup last will
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
print("On connect called")
|
||||
# publish a message to signal that the service is running
|
||||
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
||||
@ -191,32 +169,16 @@ def main():
|
||||
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed, DETECTED_OBJECTS)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# start thread to publish motion status
|
||||
mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
|
||||
[region['motion_detected'] for region in regions])
|
||||
mqtt_motion_publisher.start()
|
||||
|
||||
# start the process of capturing frames
|
||||
capture_process.start()
|
||||
print("capture_process pid ", capture_process.pid)
|
||||
|
||||
# start the object detection prep processes
|
||||
# start the object detection prep threads
|
||||
for detection_prep_thread in detection_prep_threads:
|
||||
detection_prep_thread.start()
|
||||
|
||||
detection_process.start()
|
||||
print("detection_process pid ", detection_process.pid)
|
||||
|
||||
# start the motion detection processes
|
||||
# for motion_process in motion_processes:
|
||||
# motion_process.start()
|
||||
# print("motion_process pid ", motion_process.pid)
|
||||
|
||||
# TEMP: short circuit the motion detection
|
||||
for region in regions:
|
||||
region['motion_detected'].set()
|
||||
with motion_changed:
|
||||
motion_changed.notify_all()
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
app = Flask(__name__)
|
||||
@ -259,8 +221,6 @@ def main():
|
||||
|
||||
for region in regions:
|
||||
color = (255,255,255)
|
||||
if region['motion_detected'].is_set():
|
||||
color = (0,255,0)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
color, 2)
|
||||
@ -277,8 +237,6 @@ def main():
|
||||
capture_process.join()
|
||||
for detection_prep_thread in detection_prep_threads:
|
||||
detection_prep_thread.join()
|
||||
for motion_process in motion_processes:
|
||||
motion_process.join()
|
||||
detection_process.join()
|
||||
frame_tracker.join()
|
||||
best_person_frame.join()
|
||||
|
@ -47,7 +47,7 @@ def detect_objects(prepped_frame_array, prepped_frame_time,
|
||||
objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
||||
# time.sleep(0.1)
|
||||
# objects = []
|
||||
print(engine.get_inference_time())
|
||||
# print(engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
if objects:
|
||||
for obj in objects:
|
||||
@ -109,7 +109,7 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
# should this be a region class?
|
||||
class FramePrepper(threading.Thread):
|
||||
def __init__(self, shared_frame, frame_time, frame_ready,
|
||||
frame_lock, motion_detected,
|
||||
frame_lock,
|
||||
region_size, region_x_offset, region_y_offset,
|
||||
prepped_frame_queue):
|
||||
|
||||
@ -118,7 +118,6 @@ class FramePrepper(threading.Thread):
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.motion_detected = motion_detected
|
||||
self.region_size = region_size
|
||||
self.region_x_offset = region_x_offset
|
||||
self.region_y_offset = region_y_offset
|
||||
@ -129,9 +128,6 @@ class FramePrepper(threading.Thread):
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
# wait until motion is detected
|
||||
self.motion_detected.wait()
|
||||
|
||||
with self.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
||||
|
@ -30,114 +30,92 @@ class ObjectParser(threading.Thread):
|
||||
self._objects_parsed.notify_all()
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, objects_parsed, detected_objects, motion_changed, motion_regions):
|
||||
def __init__(self, objects_parsed, detected_objects):
|
||||
threading.Thread.__init__(self)
|
||||
self._objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
self.motion_changed = motion_changed
|
||||
self.motion_regions = motion_regions
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
|
||||
# while there is motion
|
||||
while len([r for r in self.motion_regions if r.is_set()]) > 0:
|
||||
# wait a bit before checking for expired frames
|
||||
time.sleep(0.2)
|
||||
# wait a bit before checking for expired frames
|
||||
time.sleep(0.2)
|
||||
|
||||
# expire the objects that are more than 1 second old
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# look for the first object found within the last second
|
||||
# (newest objects are appended to the end)
|
||||
detected_objects = self._detected_objects.copy()
|
||||
# expire the objects that are more than 1 second old
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# look for the first object found within the last second
|
||||
# (newest objects are appended to the end)
|
||||
detected_objects = self._detected_objects.copy()
|
||||
|
||||
#print([round(now-obj['frame_time'],2) for obj in detected_objects])
|
||||
num_to_delete = 0
|
||||
for obj in detected_objects:
|
||||
if now-obj['frame_time']<2:
|
||||
break
|
||||
num_to_delete += 1
|
||||
if num_to_delete > 0:
|
||||
del self._detected_objects[:num_to_delete]
|
||||
#print([round(now-obj['frame_time'],2) for obj in detected_objects])
|
||||
num_to_delete = 0
|
||||
for obj in detected_objects:
|
||||
if now-obj['frame_time']<2:
|
||||
break
|
||||
num_to_delete += 1
|
||||
if num_to_delete > 0:
|
||||
del self._detected_objects[:num_to_delete]
|
||||
|
||||
# notify that parsed objects were changed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
# notify that parsed objects were changed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
|
||||
# wait for the global motion flag to change
|
||||
with self.motion_changed:
|
||||
self.motion_changed.wait()
|
||||
|
||||
# Maintains the frame and person with the highest score from the most recent
|
||||
# motion event
|
||||
class BestPersonFrame(threading.Thread):
|
||||
def __init__(self, objects_parsed, recent_frames, detected_objects, motion_changed, motion_regions):
|
||||
def __init__(self, objects_parsed, recent_frames, detected_objects):
|
||||
threading.Thread.__init__(self)
|
||||
self.objects_parsed = objects_parsed
|
||||
self.recent_frames = recent_frames
|
||||
self.detected_objects = detected_objects
|
||||
self.motion_changed = motion_changed
|
||||
self.motion_regions = motion_regions
|
||||
self.best_person = None
|
||||
self.best_frame = None
|
||||
|
||||
def run(self):
|
||||
motion_start = 0.0
|
||||
motion_end = 0.0
|
||||
|
||||
while True:
|
||||
|
||||
# while there is motion
|
||||
while len([r for r in self.motion_regions if r.is_set()]) > 0:
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
|
||||
# make a copy of detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
|
||||
# make a copy of the recent frames
|
||||
recent_frames = self.recent_frames.copy()
|
||||
# make a copy of detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
|
||||
# make a copy of the recent frames
|
||||
recent_frames = self.recent_frames.copy()
|
||||
|
||||
# get the highest scoring person
|
||||
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
|
||||
# get the highest scoring person
|
||||
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
|
||||
|
||||
# if there isnt a person, continue
|
||||
if new_best_person is None:
|
||||
continue
|
||||
# if there isnt a person, continue
|
||||
if new_best_person is None:
|
||||
continue
|
||||
|
||||
# if there is no current best_person
|
||||
if self.best_person is None:
|
||||
# if there is no current best_person
|
||||
if self.best_person is None:
|
||||
self.best_person = new_best_person
|
||||
# if there is already a best_person
|
||||
else:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the new best person is a higher score than the current best person
|
||||
# or the current person is more than 1 minute old, use the new best person
|
||||
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
|
||||
self.best_person = new_best_person
|
||||
# if there is already a best_person
|
||||
else:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the new best person is a higher score than the current best person
|
||||
# or the current person is more than 1 minute old, use the new best person
|
||||
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
|
||||
self.best_person = new_best_person
|
||||
|
||||
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
|
||||
best_frame = recent_frames[self.best_person['frame_time']]
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding box on the frame
|
||||
vis_util.draw_bounding_box_on_image_array(best_frame,
|
||||
self.best_person['ymin'],
|
||||
self.best_person['xmin'],
|
||||
self.best_person['ymax'],
|
||||
self.best_person['xmax'],
|
||||
color='red',
|
||||
thickness=2,
|
||||
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
|
||||
use_normalized_coordinates=False)
|
||||
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
|
||||
best_frame = recent_frames[self.best_person['frame_time']]
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding box on the frame
|
||||
vis_util.draw_bounding_box_on_image_array(best_frame,
|
||||
self.best_person['ymin'],
|
||||
self.best_person['xmin'],
|
||||
self.best_person['ymax'],
|
||||
self.best_person['xmax'],
|
||||
color='red',
|
||||
thickness=2,
|
||||
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
|
||||
use_normalized_coordinates=False)
|
||||
|
||||
# convert back to BGR
|
||||
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
motion_end = datetime.datetime.now().timestamp()
|
||||
|
||||
# wait for the global motion flag to change
|
||||
with self.motion_changed:
|
||||
self.motion_changed.wait()
|
||||
|
||||
motion_start = datetime.datetime.now().timestamp()
|
||||
# convert back to BGR
|
||||
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
|
@ -54,42 +54,34 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
|
||||
|
||||
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
|
||||
class FrameTracker(threading.Thread):
|
||||
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames, motion_changed, motion_regions):
|
||||
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
|
||||
threading.Thread.__init__(self)
|
||||
self.shared_frame = shared_frame
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.recent_frames = recent_frames
|
||||
self.motion_changed = motion_changed
|
||||
self.motion_regions = motion_regions
|
||||
|
||||
def run(self):
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
# while there is motion
|
||||
while len([r for r in self.motion_regions if r.is_set()]) > 0:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# wait for a frame
|
||||
with self.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
||||
self.frame_ready.wait()
|
||||
|
||||
# lock and make a copy of the frame
|
||||
with self.frame_lock:
|
||||
frame = self.shared_frame.copy()
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
# add the frame to recent frames
|
||||
self.recent_frames[frame_time] = frame
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# wait for a frame
|
||||
with self.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
||||
self.frame_ready.wait()
|
||||
|
||||
# lock and make a copy of the frame
|
||||
with self.frame_lock:
|
||||
frame = self.shared_frame.copy()
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
# add the frame to recent frames
|
||||
self.recent_frames[frame_time] = frame
|
||||
|
||||
# delete any old frames
|
||||
stored_frame_times = list(self.recent_frames.keys())
|
||||
for k in stored_frame_times:
|
||||
if (now - k) > 2:
|
||||
del self.recent_frames[k]
|
||||
|
||||
# wait for the global motion flag to change
|
||||
with self.motion_changed:
|
||||
self.motion_changed.wait()
|
||||
# delete any old frames
|
||||
stored_frame_times = list(self.recent_frames.keys())
|
||||
for k in stored_frame_times:
|
||||
if (now - k) > 2:
|
||||
del self.recent_frames[k]
|
||||
|
Loading…
Reference in New Issue
Block a user