mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-07-26 13:47:03 +02:00
Face UI cleanup (#17472)
* Add note * Sort by event id * Fix reprocess causing shift * Move event group to separate comp * Handle selecting events * implement event selection * Implement selected handler * handle right click * Toggle ctrl + a * Stop propogation * Fix
This commit is contained in:
parent
1dd5007fa8
commit
207d1d2806
@ -108,6 +108,10 @@ Once straight-on images are performing well, start choosing slightly off-angle i
|
||||
|
||||
It is important to methodically add photos to the library, bulk importing photos (especially from a general photo library) will lead to over-fitting in that particular scenario and hurt recognition performance.
|
||||
|
||||
### Why can't I bulk reprocess faces?
|
||||
|
||||
Face embedding models work by breaking apart faces into different features. This means that when reprocessing an image, only images from a similar angle will have its score affected.
|
||||
|
||||
### Why do unknown people score similarly to known people?
|
||||
|
||||
This can happen for a few different reasons, but this is usually an indicator that the training set needs to be improved. This is often related to over-fitting:
|
||||
|
@ -272,22 +272,9 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
|
||||
f"Detected best face for person as: {sub_label} with probability {score}"
|
||||
)
|
||||
|
||||
if self.config.face_recognition.save_attempts:
|
||||
# write face to library
|
||||
folder = os.path.join(FACE_DIR, "train")
|
||||
file = os.path.join(folder, f"{id}-{sub_label}-{score}-0.webp")
|
||||
os.makedirs(folder, exist_ok=True)
|
||||
cv2.imwrite(file, face_frame)
|
||||
|
||||
files = sorted(
|
||||
filter(lambda f: (f.endswith(".webp")), os.listdir(folder)),
|
||||
key=lambda f: os.path.getctime(os.path.join(folder, f)),
|
||||
reverse=True,
|
||||
)
|
||||
|
||||
# delete oldest face image if maximum is reached
|
||||
if len(files) > self.config.face_recognition.save_attempts:
|
||||
os.unlink(os.path.join(folder, files[-1]))
|
||||
self.write_face_attempt(
|
||||
face_frame, id, datetime.datetime.now().timestamp(), sub_label, score
|
||||
)
|
||||
|
||||
if id not in self.person_face_history:
|
||||
self.person_face_history[id] = []
|
||||
@ -383,9 +370,9 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
|
||||
}
|
||||
elif topic == EmbeddingsRequestEnum.reprocess_face.value:
|
||||
current_file: str = request_data["image_file"]
|
||||
id = current_file[0 : current_file.index("-", current_file.index("-") + 1)]
|
||||
face_score = current_file[current_file.rfind("-") : current_file.rfind(".")]
|
||||
(id_time, id_rand, timestamp, _, _) = current_file.split("-")
|
||||
img = None
|
||||
id = f"{id_time}-{id_rand}"
|
||||
|
||||
if current_file:
|
||||
img = cv2.imread(current_file)
|
||||
@ -411,7 +398,7 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
|
||||
folder = os.path.join(FACE_DIR, "train")
|
||||
os.makedirs(folder, exist_ok=True)
|
||||
new_file = os.path.join(
|
||||
folder, f"{id}-{sub_label}-{score}-{face_score}.webp"
|
||||
folder, f"{id}-{timestamp}-{sub_label}-{score}.webp"
|
||||
)
|
||||
shutil.move(current_file, new_file)
|
||||
|
||||
@ -461,3 +448,30 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
|
||||
weighted_average = weighted_scores[best_name] / total_weights[best_name]
|
||||
|
||||
return best_name, weighted_average
|
||||
|
||||
def write_face_attempt(
|
||||
self,
|
||||
frame: np.ndarray,
|
||||
event_id: str,
|
||||
timestamp: float,
|
||||
sub_label: str,
|
||||
score: float,
|
||||
) -> None:
|
||||
if self.config.face_recognition.save_attempts:
|
||||
# write face to library
|
||||
folder = os.path.join(FACE_DIR, "train")
|
||||
file = os.path.join(
|
||||
folder, f"{event_id}-{timestamp}-{sub_label}-{score}.webp"
|
||||
)
|
||||
os.makedirs(folder, exist_ok=True)
|
||||
cv2.imwrite(file, frame)
|
||||
|
||||
files = sorted(
|
||||
filter(lambda f: (f.endswith(".webp")), os.listdir(folder)),
|
||||
key=lambda f: os.path.getctime(os.path.join(folder, f)),
|
||||
reverse=True,
|
||||
)
|
||||
|
||||
# delete oldest face image if maximum is reached
|
||||
if len(files) > self.config.face_recognition.save_attempts:
|
||||
os.unlink(os.path.join(folder, files[-1]))
|
||||
|
@ -33,6 +33,7 @@ export default function useContextMenu(
|
||||
};
|
||||
} else {
|
||||
const context = (e: MouseEvent) => {
|
||||
e.stopPropagation();
|
||||
e.preventDefault();
|
||||
callback();
|
||||
};
|
||||
|
@ -142,29 +142,33 @@ export default function FaceLibrary() {
|
||||
|
||||
const [selectedFaces, setSelectedFaces] = useState<string[]>([]);
|
||||
|
||||
const onClickFace = useCallback(
|
||||
(imageId: string, ctrl: boolean) => {
|
||||
const onClickFaces = useCallback(
|
||||
(images: string[], ctrl: boolean) => {
|
||||
if (selectedFaces.length == 0 && !ctrl) {
|
||||
return;
|
||||
}
|
||||
|
||||
const index = selectedFaces.indexOf(imageId);
|
||||
let newSelectedFaces = [...selectedFaces];
|
||||
|
||||
if (index != -1) {
|
||||
if (selectedFaces.length == 1) {
|
||||
setSelectedFaces([]);
|
||||
images.forEach((imageId) => {
|
||||
const index = newSelectedFaces.indexOf(imageId);
|
||||
|
||||
if (index != -1) {
|
||||
if (selectedFaces.length == 1) {
|
||||
newSelectedFaces = [];
|
||||
} else {
|
||||
const copy = [
|
||||
...newSelectedFaces.slice(0, index),
|
||||
...newSelectedFaces.slice(index + 1),
|
||||
];
|
||||
newSelectedFaces = copy;
|
||||
}
|
||||
} else {
|
||||
const copy = [
|
||||
...selectedFaces.slice(0, index),
|
||||
...selectedFaces.slice(index + 1),
|
||||
];
|
||||
setSelectedFaces(copy);
|
||||
newSelectedFaces.push(imageId);
|
||||
}
|
||||
} else {
|
||||
const copy = [...selectedFaces];
|
||||
copy.push(imageId);
|
||||
setSelectedFaces(copy);
|
||||
}
|
||||
});
|
||||
|
||||
setSelectedFaces(newSelectedFaces);
|
||||
},
|
||||
[selectedFaces, setSelectedFaces],
|
||||
);
|
||||
@ -212,7 +216,11 @@ export default function FaceLibrary() {
|
||||
switch (key) {
|
||||
case "a":
|
||||
if (modifiers.ctrl) {
|
||||
setSelectedFaces([...trainImages]);
|
||||
if (selectedFaces.length) {
|
||||
setSelectedFaces([]);
|
||||
} else {
|
||||
setSelectedFaces([...trainImages]);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case "Escape":
|
||||
@ -253,6 +261,16 @@ export default function FaceLibrary() {
|
||||
/>
|
||||
{selectedFaces?.length > 0 ? (
|
||||
<div className="flex items-center justify-center gap-2">
|
||||
<div className="mx-1 flex w-48 items-center justify-center text-sm text-muted-foreground">
|
||||
<div className="p-1">{`${selectedFaces.length} selected`}</div>
|
||||
<div className="p-1">{"|"}</div>
|
||||
<div
|
||||
className="cursor-pointer p-2 text-primary hover:rounded-lg hover:bg-secondary"
|
||||
onClick={() => setSelectedFaces([])}
|
||||
>
|
||||
{t("button.unselect", { ns: "common" })}
|
||||
</div>
|
||||
</div>
|
||||
<Button
|
||||
className="flex gap-2"
|
||||
onClick={() => onDelete("train", selectedFaces)}
|
||||
@ -283,7 +301,7 @@ export default function FaceLibrary() {
|
||||
attemptImages={trainImages}
|
||||
faceNames={faces}
|
||||
selectedFaces={selectedFaces}
|
||||
onClickFace={onClickFace}
|
||||
onClickFaces={onClickFaces}
|
||||
onRefresh={refreshFaces}
|
||||
/>
|
||||
) : (
|
||||
@ -391,7 +409,7 @@ type TrainingGridProps = {
|
||||
attemptImages: string[];
|
||||
faceNames: string[];
|
||||
selectedFaces: string[];
|
||||
onClickFace: (image: string, ctrl: boolean) => void;
|
||||
onClickFaces: (images: string[], ctrl: boolean) => void;
|
||||
onRefresh: () => void;
|
||||
};
|
||||
function TrainingGrid({
|
||||
@ -399,34 +417,42 @@ function TrainingGrid({
|
||||
attemptImages,
|
||||
faceNames,
|
||||
selectedFaces,
|
||||
onClickFace,
|
||||
onClickFaces,
|
||||
onRefresh,
|
||||
}: TrainingGridProps) {
|
||||
const { t } = useTranslation(["views/faceLibrary", "views/explore"]);
|
||||
const navigate = useNavigate();
|
||||
const { t } = useTranslation(["views/faceLibrary"]);
|
||||
|
||||
// face data
|
||||
|
||||
const faceGroups = useMemo(() => {
|
||||
const groups: { [eventId: string]: RecognizedFaceData[] } = {};
|
||||
|
||||
Array.from(new Set(attemptImages))
|
||||
.sort()
|
||||
.reverse()
|
||||
.forEach((image) => {
|
||||
const faces = attemptImages
|
||||
.map((image) => {
|
||||
const parts = image.split("-");
|
||||
const data = {
|
||||
filename: image,
|
||||
timestamp: Number.parseFloat(parts[0]),
|
||||
eventId: `${parts[0]}-${parts[1]}`,
|
||||
name: parts[2],
|
||||
score: Number.parseFloat(parts[3]),
|
||||
};
|
||||
|
||||
if (groups[data.eventId]) {
|
||||
groups[data.eventId].push(data);
|
||||
try {
|
||||
return {
|
||||
filename: image,
|
||||
timestamp: Number.parseFloat(parts[2]),
|
||||
eventId: `${parts[0]}-${parts[1]}`,
|
||||
name: parts[3],
|
||||
score: Number.parseFloat(parts[4]),
|
||||
};
|
||||
} catch {
|
||||
return null;
|
||||
}
|
||||
})
|
||||
.filter((v) => v != null);
|
||||
|
||||
faces
|
||||
.sort((a, b) => a.eventId.localeCompare(b.eventId))
|
||||
.reverse()
|
||||
.forEach((face) => {
|
||||
if (groups[face.eventId]) {
|
||||
groups[face.eventId].push(face);
|
||||
} else {
|
||||
groups[data.eventId] = [data];
|
||||
groups[face.eventId] = [face];
|
||||
}
|
||||
});
|
||||
|
||||
@ -507,72 +533,18 @@ function TrainingGrid({
|
||||
<div className="scrollbar-container flex flex-wrap gap-2 overflow-y-scroll p-1">
|
||||
{Object.entries(faceGroups).map(([key, group]) => {
|
||||
const event = events?.find((ev) => ev.id == key);
|
||||
|
||||
return (
|
||||
<div
|
||||
<FaceAttemptGroup
|
||||
key={key}
|
||||
className={cn(
|
||||
"flex flex-col gap-2 rounded-lg bg-card p-2",
|
||||
isMobile && "w-full",
|
||||
)}
|
||||
>
|
||||
<div className="flex flex-row justify-between">
|
||||
<div className="capitalize">
|
||||
Person
|
||||
{event?.sub_label
|
||||
? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
|
||||
: ": Unknown"}
|
||||
</div>
|
||||
{event && (
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<div
|
||||
className="cursor-pointer"
|
||||
onClick={() => {
|
||||
navigate(`/explore?event_id=${event.id}`);
|
||||
}}
|
||||
>
|
||||
<LuSearch className="size-4 text-muted-foreground" />
|
||||
</div>
|
||||
</TooltipTrigger>
|
||||
<TooltipPortal>
|
||||
<TooltipContent>
|
||||
{t("details.item.button.viewInExplore", {
|
||||
ns: "views/explore",
|
||||
})}
|
||||
</TooltipContent>
|
||||
</TooltipPortal>
|
||||
</Tooltip>
|
||||
)}
|
||||
</div>
|
||||
|
||||
<div
|
||||
className={cn(
|
||||
"gap-2",
|
||||
isDesktop
|
||||
? "flex flex-row flex-wrap"
|
||||
: "grid grid-cols-2 sm:grid-cols-5 lg:grid-cols-6",
|
||||
)}
|
||||
>
|
||||
{group.map((data: RecognizedFaceData) => (
|
||||
<FaceAttempt
|
||||
key={data.filename}
|
||||
data={data}
|
||||
faceNames={faceNames}
|
||||
recognitionConfig={config.face_recognition}
|
||||
selected={selectedFaces.includes(data.filename)}
|
||||
onClick={(data, meta) => {
|
||||
if (meta || selectedFaces.length > 0) {
|
||||
onClickFace(data.filename, true);
|
||||
} else if (event) {
|
||||
setSelectedEvent(event);
|
||||
}
|
||||
}}
|
||||
onRefresh={onRefresh}
|
||||
/>
|
||||
))}
|
||||
</div>
|
||||
</div>
|
||||
config={config}
|
||||
group={group}
|
||||
event={event}
|
||||
faceNames={faceNames}
|
||||
selectedFaces={selectedFaces}
|
||||
onClickFaces={onClickFaces}
|
||||
onSelectEvent={setSelectedEvent}
|
||||
onRefresh={onRefresh}
|
||||
/>
|
||||
);
|
||||
})}
|
||||
</div>
|
||||
@ -580,6 +552,146 @@ function TrainingGrid({
|
||||
);
|
||||
}
|
||||
|
||||
type FaceAttemptGroupProps = {
|
||||
config: FrigateConfig;
|
||||
group: RecognizedFaceData[];
|
||||
event?: Event;
|
||||
faceNames: string[];
|
||||
selectedFaces: string[];
|
||||
onClickFaces: (image: string[], ctrl: boolean) => void;
|
||||
onSelectEvent: (event: Event) => void;
|
||||
onRefresh: () => void;
|
||||
};
|
||||
function FaceAttemptGroup({
|
||||
config,
|
||||
group,
|
||||
event,
|
||||
faceNames,
|
||||
selectedFaces,
|
||||
onClickFaces,
|
||||
onSelectEvent,
|
||||
onRefresh,
|
||||
}: FaceAttemptGroupProps) {
|
||||
const navigate = useNavigate();
|
||||
const { t } = useTranslation(["views/faceLibrary", "views/explore"]);
|
||||
|
||||
// data
|
||||
|
||||
const allFacesSelected = useMemo(
|
||||
() => group.every((face) => selectedFaces.includes(face.filename)),
|
||||
[group, selectedFaces],
|
||||
);
|
||||
|
||||
// interaction
|
||||
|
||||
const handleClickEvent = useCallback(
|
||||
(meta: boolean) => {
|
||||
if (event && selectedFaces.length == 0 && !meta) {
|
||||
onSelectEvent(event);
|
||||
} else {
|
||||
const anySelected =
|
||||
group.find((face) => selectedFaces.includes(face.filename)) !=
|
||||
undefined;
|
||||
|
||||
if (anySelected) {
|
||||
// deselect all
|
||||
const toDeselect: string[] = [];
|
||||
group.forEach((face) => {
|
||||
if (selectedFaces.includes(face.filename)) {
|
||||
toDeselect.push(face.filename);
|
||||
}
|
||||
});
|
||||
onClickFaces(toDeselect, false);
|
||||
} else {
|
||||
// select all
|
||||
onClickFaces(
|
||||
group.map((face) => face.filename),
|
||||
true,
|
||||
);
|
||||
}
|
||||
}
|
||||
},
|
||||
[event, group, selectedFaces, onClickFaces, onSelectEvent],
|
||||
);
|
||||
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card p-2 outline outline-[3px]",
|
||||
isMobile && "w-full",
|
||||
allFacesSelected
|
||||
? "shadow-selected outline-selected"
|
||||
: "outline-transparent duration-500",
|
||||
)}
|
||||
onClick={(e) => handleClickEvent(e.metaKey)}
|
||||
onContextMenu={(e) => {
|
||||
e.stopPropagation();
|
||||
e.preventDefault();
|
||||
handleClickEvent(true);
|
||||
}}
|
||||
>
|
||||
<div className="flex flex-row justify-between">
|
||||
<div className="capitalize">
|
||||
Person
|
||||
{event?.sub_label
|
||||
? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
|
||||
: ": Unknown"}
|
||||
</div>
|
||||
{event && (
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<div
|
||||
className="cursor-pointer"
|
||||
onClick={() => {
|
||||
navigate(`/explore?event_id=${event.id}`);
|
||||
}}
|
||||
>
|
||||
<LuSearch className="size-4 text-muted-foreground" />
|
||||
</div>
|
||||
</TooltipTrigger>
|
||||
<TooltipPortal>
|
||||
<TooltipContent>
|
||||
{t("details.item.button.viewInExplore", {
|
||||
ns: "views/explore",
|
||||
})}
|
||||
</TooltipContent>
|
||||
</TooltipPortal>
|
||||
</Tooltip>
|
||||
)}
|
||||
</div>
|
||||
|
||||
<div
|
||||
className={cn(
|
||||
"gap-2",
|
||||
isDesktop
|
||||
? "flex flex-row flex-wrap"
|
||||
: "grid grid-cols-2 sm:grid-cols-5 lg:grid-cols-6",
|
||||
)}
|
||||
>
|
||||
{group.map((data: RecognizedFaceData) => (
|
||||
<FaceAttempt
|
||||
key={data.filename}
|
||||
data={data}
|
||||
faceNames={faceNames}
|
||||
recognitionConfig={config.face_recognition}
|
||||
selected={
|
||||
allFacesSelected ? false : selectedFaces.includes(data.filename)
|
||||
}
|
||||
onClick={(data, meta) => {
|
||||
if (meta || selectedFaces.length > 0) {
|
||||
onClickFaces([data.filename], true);
|
||||
} else if (event) {
|
||||
onSelectEvent(event);
|
||||
}
|
||||
}}
|
||||
onRefresh={onRefresh}
|
||||
/>
|
||||
))}
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
type FaceAttemptProps = {
|
||||
data: RecognizedFaceData;
|
||||
faceNames: string[];
|
||||
@ -693,7 +805,10 @@ function FaceAttempt({
|
||||
ref={imgRef}
|
||||
className={cn("size-44", isMobile && "w-full")}
|
||||
src={`${baseUrl}clips/faces/train/${data.filename}`}
|
||||
onClick={(e) => onClick(data, e.metaKey || e.ctrlKey)}
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onClick(data, e.metaKey || e.ctrlKey);
|
||||
}}
|
||||
/>
|
||||
<div className="absolute bottom-1 right-1 z-10 rounded-lg bg-black/50 px-2 py-1 text-xs text-white">
|
||||
<TimeAgo
|
||||
@ -805,7 +920,7 @@ function FaceImage({ name, image, onDelete }: FaceImageProps) {
|
||||
<div className="relative flex flex-col rounded-lg">
|
||||
<div
|
||||
className={cn(
|
||||
"w-full overflow-hidden rounded-t-lg border border-t-0 *:text-card-foreground",
|
||||
"w-full overflow-hidden rounded-t-lg *:text-card-foreground",
|
||||
isMobile && "flex justify-center",
|
||||
)}
|
||||
>
|
||||
|
Loading…
Reference in New Issue
Block a user