mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-19 19:06:16 +01:00
Mostly working detection in a separate process
This commit is contained in:
parent
3f34c57e31
commit
24cb3508e8
@ -23,6 +23,7 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
||||
# python-prctl \
|
||||
numpy \
|
||||
imutils \
|
||||
SharedArray \
|
||||
# Flask \
|
||||
# paho-mqtt \
|
||||
# PyYAML \
|
||||
@ -50,7 +51,6 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
COPY detect_objects.py .
|
||||
COPY start.py .
|
||||
COPY benchmark.py .
|
||||
|
||||
CMD ["python3", "-u", "start.py"]
|
||||
CMD ["python3", "-u", "benchmark.py"]
|
||||
|
@ -9,6 +9,8 @@ import cv2
|
||||
import imutils
|
||||
import numpy as np
|
||||
import subprocess as sp
|
||||
import multiprocessing as mp
|
||||
import SharedArray as sa
|
||||
from scipy.spatial import distance as dist
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
@ -245,6 +247,19 @@ class ObjectDetector():
|
||||
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
|
||||
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
|
||||
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
|
||||
|
||||
detections = np.zeros((20,6), np.float32)
|
||||
for i, score in enumerate(scores):
|
||||
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
|
||||
|
||||
return detections
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
|
||||
@ -268,6 +283,63 @@ class ObjectDetector():
|
||||
|
||||
return detections
|
||||
|
||||
class RemoteObjectDetector():
|
||||
def __init__(self, model, labels):
|
||||
self.labels = load_labels(labels)
|
||||
try:
|
||||
sa.delete("frame")
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
sa.delete("detections")
|
||||
except:
|
||||
pass
|
||||
|
||||
self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
|
||||
self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
|
||||
|
||||
self.detect_lock = mp.Lock()
|
||||
self.detect_ready = mp.Event()
|
||||
self.frame_ready = mp.Event()
|
||||
|
||||
def run_detector(model, labels, detect_ready, frame_ready):
|
||||
object_detector = ObjectDetector(model, labels)
|
||||
input_frame = sa.attach("frame")
|
||||
detections = sa.attach("detections")
|
||||
|
||||
while True:
|
||||
# signal that the process is ready to detect
|
||||
detect_ready.set()
|
||||
# wait until a frame is ready
|
||||
frame_ready.wait()
|
||||
# signal that the process is busy
|
||||
detect_ready.clear()
|
||||
frame_ready.clear()
|
||||
|
||||
detections[:] = object_detector.detect_raw(input_frame)
|
||||
|
||||
self.detect_process = mp.Process(target=run_detector, args=(model, labels, self.detect_ready, self.frame_ready))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
detections = []
|
||||
with self.detect_lock:
|
||||
self.input_frame[:] = tensor_input
|
||||
# signal that a frame is ready
|
||||
self.frame_ready.set()
|
||||
# wait until the detection process is finished,
|
||||
self.detect_ready.wait()
|
||||
for d in self.detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
return detections
|
||||
|
||||
class ObjectTracker():
|
||||
def __init__(self, max_disappeared):
|
||||
self.tracked_objects = {}
|
||||
@ -421,6 +493,7 @@ def main():
|
||||
frame = np.zeros(frame_shape, np.uint8)
|
||||
motion_detector = MotionDetector(frame_shape, resize_factor=6)
|
||||
object_detector = ObjectDetector('/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite', '/lab/labelmap.txt')
|
||||
# object_detector = RemoteObjectDetector('/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite', '/lab/labelmap.txt')
|
||||
# object_detector = ObjectDetector('/lab/detect.tflite', '/lab/labelmap.txt')
|
||||
object_tracker = ObjectTracker(10)
|
||||
|
||||
@ -432,8 +505,8 @@ def main():
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
['-hide_banner','-loglevel','panic'] +
|
||||
['-hwaccel','vaapi','-hwaccel_device','/dev/dri/renderD129','-hwaccel_output_format','yuv420p'] +
|
||||
['-i', '/debug/input/output.mp4'] +
|
||||
# ['-i', '/debug/back-ali-jake.mp4'] +
|
||||
# ['-i', '/debug/input/output.mp4'] +
|
||||
['-i', '/debug/back-ali-jake.mp4'] +
|
||||
['-f','rawvideo','-pix_fmt','rgb24'] +
|
||||
['pipe:'])
|
||||
|
||||
@ -606,29 +679,29 @@ def main():
|
||||
|
||||
# if (frames >= 700 and frames <= 1635) or (frames >= 2500):
|
||||
# if (frames >= 700 and frames <= 1000):
|
||||
# if (frames >= 0):
|
||||
# # row1 = cv2.hconcat([gray, cv2.convertScaleAbs(avg_frame)])
|
||||
# # row2 = cv2.hconcat([frameDelta, thresh])
|
||||
# # cv2.imwrite(f"/lab/debug/output/{frames}.jpg", cv2.vconcat([row1, row2]))
|
||||
# # # cv2.imwrite(f"/lab/debug/output/resized-frame-{frames}.jpg", resized_frame)
|
||||
# # for region in motion_regions:
|
||||
# # cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (255,128,0), 2)
|
||||
# # for region in object_regions:
|
||||
# # cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,128,255), 2)
|
||||
# for region in merged_regions:
|
||||
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
|
||||
# for box in motion_boxes:
|
||||
# cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (255,0,0), 2)
|
||||
# for detection in detections:
|
||||
# box = detection[2]
|
||||
# draw_box_with_label(frame, box[0], box[1], box[2], box[3], detection[0], f"{detection[1]*100}%")
|
||||
# for obj in object_tracker.tracked_objects.values():
|
||||
# box = obj['box']
|
||||
# draw_box_with_label(frame, box[0], box[1], box[2], box[3], obj['label'], obj['id'], thickness=1, color=(0,0,255), position='bl')
|
||||
# cv2.putText(frame, str(total_detections), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
|
||||
# cv2.putText(frame, str(frame_detections), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
|
||||
# cv2.imwrite(f"/lab/debug/output/frame-{frames}.jpg", frame)
|
||||
# break
|
||||
if (frames >= 0):
|
||||
# row1 = cv2.hconcat([gray, cv2.convertScaleAbs(avg_frame)])
|
||||
# row2 = cv2.hconcat([frameDelta, thresh])
|
||||
# cv2.imwrite(f"/lab/debug/output/{frames}.jpg", cv2.vconcat([row1, row2]))
|
||||
# # cv2.imwrite(f"/lab/debug/output/resized-frame-{frames}.jpg", resized_frame)
|
||||
# for region in motion_regions:
|
||||
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (255,128,0), 2)
|
||||
# for region in object_regions:
|
||||
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,128,255), 2)
|
||||
for region in merged_regions:
|
||||
cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
|
||||
for box in motion_boxes:
|
||||
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (255,0,0), 2)
|
||||
for detection in detections:
|
||||
box = detection[2]
|
||||
draw_box_with_label(frame, box[0], box[1], box[2], box[3], detection[0], f"{detection[1]*100}%")
|
||||
for obj in object_tracker.tracked_objects.values():
|
||||
box = obj['box']
|
||||
draw_box_with_label(frame, box[0], box[1], box[2], box[3], obj['label'], obj['id'], thickness=1, color=(0,0,255), position='bl')
|
||||
cv2.putText(frame, str(total_detections), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
|
||||
cv2.putText(frame, str(frame_detections), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
|
||||
cv2.imwrite(f"/lab/debug/output/frame-{frames}.jpg", frame)
|
||||
# break
|
||||
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
print(f"Processed {frames} frames for {duration:.2f} seconds and {(frames/duration):.2f} FPS.")
|
||||
|
Loading…
Reference in New Issue
Block a user