mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	Mostly working detection in a separate process
This commit is contained in:
		
							parent
							
								
									3f34c57e31
								
							
						
					
					
						commit
						24cb3508e8
					
				@ -23,6 +23,7 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
 | 
				
			|||||||
        # python-prctl \
 | 
					        # python-prctl \
 | 
				
			||||||
        numpy \
 | 
					        numpy \
 | 
				
			||||||
        imutils \
 | 
					        imutils \
 | 
				
			||||||
 | 
					        SharedArray \
 | 
				
			||||||
        # Flask \
 | 
					        # Flask \
 | 
				
			||||||
        # paho-mqtt \
 | 
					        # paho-mqtt \
 | 
				
			||||||
        # PyYAML \
 | 
					        # PyYAML \
 | 
				
			||||||
@ -50,7 +51,6 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
 | 
				
			|||||||
WORKDIR /opt/frigate/
 | 
					WORKDIR /opt/frigate/
 | 
				
			||||||
ADD frigate frigate/
 | 
					ADD frigate frigate/
 | 
				
			||||||
COPY detect_objects.py .
 | 
					COPY detect_objects.py .
 | 
				
			||||||
COPY start.py .
 | 
					 | 
				
			||||||
COPY benchmark.py .
 | 
					COPY benchmark.py .
 | 
				
			||||||
 | 
					
 | 
				
			||||||
CMD ["python3", "-u", "start.py"]
 | 
					CMD ["python3", "-u", "benchmark.py"]
 | 
				
			||||||
 | 
				
			|||||||
@ -9,6 +9,8 @@ import cv2
 | 
				
			|||||||
import imutils
 | 
					import imutils
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
import subprocess as sp
 | 
					import subprocess as sp
 | 
				
			||||||
 | 
					import multiprocessing as mp
 | 
				
			||||||
 | 
					import SharedArray as sa
 | 
				
			||||||
from scipy.spatial import distance as dist
 | 
					from scipy.spatial import distance as dist
 | 
				
			||||||
import tflite_runtime.interpreter as tflite
 | 
					import tflite_runtime.interpreter as tflite
 | 
				
			||||||
from tflite_runtime.interpreter import load_delegate
 | 
					from tflite_runtime.interpreter import load_delegate
 | 
				
			||||||
@ -245,6 +247,19 @@ class ObjectDetector():
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        self.tensor_input_details = self.interpreter.get_input_details()
 | 
					        self.tensor_input_details = self.interpreter.get_input_details()
 | 
				
			||||||
        self.tensor_output_details = self.interpreter.get_output_details()
 | 
					        self.tensor_output_details = self.interpreter.get_output_details()
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def detect_raw(self, tensor_input):
 | 
				
			||||||
 | 
					        self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
 | 
				
			||||||
 | 
					        self.interpreter.invoke()
 | 
				
			||||||
 | 
					        boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
 | 
				
			||||||
 | 
					        label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
 | 
				
			||||||
 | 
					        scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        detections = np.zeros((20,6), np.float32)
 | 
				
			||||||
 | 
					        for i, score in enumerate(scores):
 | 
				
			||||||
 | 
					            detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        return detections
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def detect(self, tensor_input, threshold=.4):
 | 
					    def detect(self, tensor_input, threshold=.4):
 | 
				
			||||||
        self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
 | 
					        self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
 | 
				
			||||||
@ -268,6 +283,63 @@ class ObjectDetector():
 | 
				
			|||||||
        
 | 
					        
 | 
				
			||||||
        return detections
 | 
					        return detections
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class RemoteObjectDetector():
 | 
				
			||||||
 | 
					    def __init__(self, model, labels):
 | 
				
			||||||
 | 
					        self.labels = load_labels(labels)
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            sa.delete("frame")
 | 
				
			||||||
 | 
					        except:
 | 
				
			||||||
 | 
					            pass
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            sa.delete("detections")
 | 
				
			||||||
 | 
					        except:
 | 
				
			||||||
 | 
					            pass
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
 | 
				
			||||||
 | 
					        self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.detect_lock = mp.Lock()
 | 
				
			||||||
 | 
					        self.detect_ready = mp.Event()
 | 
				
			||||||
 | 
					        self.frame_ready = mp.Event()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        def run_detector(model, labels, detect_ready, frame_ready):
 | 
				
			||||||
 | 
					            object_detector = ObjectDetector(model, labels)
 | 
				
			||||||
 | 
					            input_frame = sa.attach("frame")
 | 
				
			||||||
 | 
					            detections = sa.attach("detections")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            while True:
 | 
				
			||||||
 | 
					                # signal that the process is ready to detect
 | 
				
			||||||
 | 
					                detect_ready.set()
 | 
				
			||||||
 | 
					                # wait until a frame is ready
 | 
				
			||||||
 | 
					                frame_ready.wait()
 | 
				
			||||||
 | 
					                # signal that the process is busy
 | 
				
			||||||
 | 
					                detect_ready.clear()
 | 
				
			||||||
 | 
					                frame_ready.clear()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                detections[:] = object_detector.detect_raw(input_frame)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.detect_process = mp.Process(target=run_detector, args=(model, labels, self.detect_ready, self.frame_ready))
 | 
				
			||||||
 | 
					        self.detect_process.daemon = True
 | 
				
			||||||
 | 
					        self.detect_process.start()
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def detect(self, tensor_input, threshold=.4):
 | 
				
			||||||
 | 
					        detections = []
 | 
				
			||||||
 | 
					        with self.detect_lock:
 | 
				
			||||||
 | 
					            self.input_frame[:] = tensor_input
 | 
				
			||||||
 | 
					            # signal that a frame is ready
 | 
				
			||||||
 | 
					            self.frame_ready.set()
 | 
				
			||||||
 | 
					            # wait until the detection process is finished,
 | 
				
			||||||
 | 
					            self.detect_ready.wait()
 | 
				
			||||||
 | 
					            for d in self.detections:
 | 
				
			||||||
 | 
					                if d[1] < threshold:
 | 
				
			||||||
 | 
					                    break
 | 
				
			||||||
 | 
					                detections.append((
 | 
				
			||||||
 | 
					                    self.labels[int(d[0])],
 | 
				
			||||||
 | 
					                    float(d[1]),
 | 
				
			||||||
 | 
					                    (d[2], d[3], d[4], d[5])
 | 
				
			||||||
 | 
					                ))
 | 
				
			||||||
 | 
					        return detections
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class ObjectTracker():
 | 
					class ObjectTracker():
 | 
				
			||||||
    def __init__(self, max_disappeared):
 | 
					    def __init__(self, max_disappeared):
 | 
				
			||||||
        self.tracked_objects = {}
 | 
					        self.tracked_objects = {}
 | 
				
			||||||
@ -421,6 +493,7 @@ def main():
 | 
				
			|||||||
    frame = np.zeros(frame_shape, np.uint8)
 | 
					    frame = np.zeros(frame_shape, np.uint8)
 | 
				
			||||||
    motion_detector = MotionDetector(frame_shape, resize_factor=6)
 | 
					    motion_detector = MotionDetector(frame_shape, resize_factor=6)
 | 
				
			||||||
    object_detector = ObjectDetector('/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite', '/lab/labelmap.txt')
 | 
					    object_detector = ObjectDetector('/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite', '/lab/labelmap.txt')
 | 
				
			||||||
 | 
					    # object_detector = RemoteObjectDetector('/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite', '/lab/labelmap.txt')
 | 
				
			||||||
    # object_detector = ObjectDetector('/lab/detect.tflite', '/lab/labelmap.txt')
 | 
					    # object_detector = ObjectDetector('/lab/detect.tflite', '/lab/labelmap.txt')
 | 
				
			||||||
    object_tracker = ObjectTracker(10)
 | 
					    object_tracker = ObjectTracker(10)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -432,8 +505,8 @@ def main():
 | 
				
			|||||||
    ffmpeg_cmd = (['ffmpeg'] +
 | 
					    ffmpeg_cmd = (['ffmpeg'] +
 | 
				
			||||||
            ['-hide_banner','-loglevel','panic'] +
 | 
					            ['-hide_banner','-loglevel','panic'] +
 | 
				
			||||||
            ['-hwaccel','vaapi','-hwaccel_device','/dev/dri/renderD129','-hwaccel_output_format','yuv420p'] +
 | 
					            ['-hwaccel','vaapi','-hwaccel_device','/dev/dri/renderD129','-hwaccel_output_format','yuv420p'] +
 | 
				
			||||||
            ['-i', '/debug/input/output.mp4'] +
 | 
					            # ['-i', '/debug/input/output.mp4'] +
 | 
				
			||||||
            # ['-i', '/debug/back-ali-jake.mp4'] +
 | 
					            ['-i', '/debug/back-ali-jake.mp4'] +
 | 
				
			||||||
            ['-f','rawvideo','-pix_fmt','rgb24'] +
 | 
					            ['-f','rawvideo','-pix_fmt','rgb24'] +
 | 
				
			||||||
            ['pipe:'])
 | 
					            ['pipe:'])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -606,29 +679,29 @@ def main():
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        # if (frames >= 700 and frames <= 1635) or (frames >= 2500):
 | 
					        # if (frames >= 700 and frames <= 1635) or (frames >= 2500):
 | 
				
			||||||
        # if (frames >= 700 and frames <= 1000):
 | 
					        # if (frames >= 700 and frames <= 1000):
 | 
				
			||||||
        # if (frames >= 0):
 | 
					        if (frames >= 0):
 | 
				
			||||||
        #     # row1 = cv2.hconcat([gray, cv2.convertScaleAbs(avg_frame)])
 | 
					            # row1 = cv2.hconcat([gray, cv2.convertScaleAbs(avg_frame)])
 | 
				
			||||||
        #     # row2 = cv2.hconcat([frameDelta, thresh])
 | 
					            # row2 = cv2.hconcat([frameDelta, thresh])
 | 
				
			||||||
        #     # cv2.imwrite(f"/lab/debug/output/{frames}.jpg", cv2.vconcat([row1, row2]))
 | 
					            # cv2.imwrite(f"/lab/debug/output/{frames}.jpg", cv2.vconcat([row1, row2]))
 | 
				
			||||||
        #     # # cv2.imwrite(f"/lab/debug/output/resized-frame-{frames}.jpg", resized_frame)
 | 
					            # # cv2.imwrite(f"/lab/debug/output/resized-frame-{frames}.jpg", resized_frame)
 | 
				
			||||||
        #     # for region in motion_regions:
 | 
					            # for region in motion_regions:
 | 
				
			||||||
        #     #     cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (255,128,0), 2)
 | 
					            #     cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (255,128,0), 2)
 | 
				
			||||||
        #     # for region in object_regions:
 | 
					            # for region in object_regions:
 | 
				
			||||||
        #     #     cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,128,255), 2)
 | 
					            #     cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,128,255), 2)
 | 
				
			||||||
        #     for region in merged_regions:
 | 
					            for region in merged_regions:
 | 
				
			||||||
        #         cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
 | 
					                cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
 | 
				
			||||||
        #     for box in motion_boxes:
 | 
					            for box in motion_boxes:
 | 
				
			||||||
        #         cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (255,0,0), 2)
 | 
					                cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (255,0,0), 2)
 | 
				
			||||||
        #     for detection in detections:
 | 
					            for detection in detections:
 | 
				
			||||||
        #         box = detection[2]
 | 
					                box = detection[2]
 | 
				
			||||||
        #         draw_box_with_label(frame, box[0], box[1], box[2], box[3], detection[0], f"{detection[1]*100}%")
 | 
					                draw_box_with_label(frame, box[0], box[1], box[2], box[3], detection[0], f"{detection[1]*100}%")
 | 
				
			||||||
        #     for obj in object_tracker.tracked_objects.values():
 | 
					            for obj in object_tracker.tracked_objects.values():
 | 
				
			||||||
        #         box = obj['box']
 | 
					                box = obj['box']
 | 
				
			||||||
        #         draw_box_with_label(frame, box[0], box[1], box[2], box[3], obj['label'], obj['id'], thickness=1, color=(0,0,255), position='bl')
 | 
					                draw_box_with_label(frame, box[0], box[1], box[2], box[3], obj['label'], obj['id'], thickness=1, color=(0,0,255), position='bl')
 | 
				
			||||||
        #     cv2.putText(frame, str(total_detections), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
 | 
					            cv2.putText(frame, str(total_detections), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
 | 
				
			||||||
        #     cv2.putText(frame, str(frame_detections), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
 | 
					            cv2.putText(frame, str(frame_detections), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
 | 
				
			||||||
        #     cv2.imwrite(f"/lab/debug/output/frame-{frames}.jpg", frame)
 | 
					            cv2.imwrite(f"/lab/debug/output/frame-{frames}.jpg", frame)
 | 
				
			||||||
        #     break
 | 
					            # break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    duration = datetime.datetime.now().timestamp()-start
 | 
					    duration = datetime.datetime.now().timestamp()-start
 | 
				
			||||||
    print(f"Processed {frames} frames for {duration:.2f} seconds and {(frames/duration):.2f} FPS.")
 | 
					    print(f"Processed {frames} frames for {duration:.2f} seconds and {(frames/duration):.2f} FPS.")
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user