no longer make motion settings dynamic

This commit is contained in:
Blake Blackshear 2021-11-07 13:16:38 -06:00
parent e351e132f5
commit 294c79a271
3 changed files with 52 additions and 25 deletions

View File

@ -194,10 +194,14 @@ motion:
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255.
threshold: 25
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: ~0.17% of the motion frame area)
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will make motion detection more sensitive to smaller
# moving objects.
contour_area: 100
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: 30)
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will
# make motion detection more sensitive to smaller moving objects.
# As a rule of thumb:
# - 15 - high sensitivity
# - 30 - medium sensitivity
# - 50 - low sensitivity
contour_area: 30
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
# Too low and a fast moving person wont be detected as motion.
@ -207,10 +211,10 @@ motion:
# Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.2
# Optional: Height of the resized motion frame (default: 1/6th of the original frame height, but no less than 180)
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense of higher CPU usage.
# Lower values result in less CPU, but small changes may not register as motion.
frame_height: 180
# Optional: Height of the resized motion frame (default: 80)
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense
# of higher CPU usage. Lower values result in less CPU, but small changes may not register as motion.
frame_height: 50
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920

View File

@ -103,10 +103,10 @@ class MotionConfig(FrigateBaseModel):
ge=1,
le=255,
)
contour_area: Optional[int] = Field(title="Contour Area")
contour_area: Optional[int] = Field(default=30, title="Contour Area")
delta_alpha: float = Field(default=0.2, title="Delta Alpha")
frame_alpha: float = Field(default=0.2, title="Frame Alpha")
frame_height: Optional[int] = Field(title="Frame Height")
frame_height: Optional[int] = Field(default=50, title="Frame Height")
mask: Union[str, List[str]] = Field(
default="", title="Coordinates polygon for the motion mask."
)
@ -119,13 +119,6 @@ class RuntimeMotionConfig(MotionConfig):
def __init__(self, **config):
frame_shape = config.get("frame_shape", (1, 1))
if "frame_height" not in config:
config["frame_height"] = frame_shape[0] // 6
if "contour_area" not in config:
frame_width = frame_shape[1] * config["frame_height"] / frame_shape[0]
config["contour_area"] = config["frame_height"] * frame_width * 0.004
mask = config.get("mask", "")
config["raw_mask"] = mask

View File

@ -23,6 +23,7 @@ class MotionDetector:
interpolation=cv2.INTER_LINEAR,
)
self.mask = np.where(resized_mask == [0])
self.save_images = False
def detect(self, frame):
motion_boxes = []
@ -37,16 +38,13 @@ class MotionDetector:
)
# Improve contrast
minval = np.percentile(resized_frame, 5)
maxval = np.percentile(resized_frame, 95)
minval = np.percentile(resized_frame, 4)
maxval = np.percentile(resized_frame, 96)
resized_frame = np.clip(resized_frame, minval, maxval)
resized_frame = (((resized_frame - minval) / (maxval - minval)) * 255).astype(
np.uint8
)
# convert to grayscale
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
# mask frame
resized_frame[self.mask] = [255]
@ -55,6 +53,8 @@ class MotionDetector:
if self.frame_counter < 30:
self.frame_counter += 1
else:
if self.save_images:
self.frame_counter += 1
# compare to average
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
@ -64,7 +64,6 @@ class MotionDetector:
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
# compute the threshold image for the current frame
# TODO: threshold
current_thresh = cv2.threshold(
frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY
)[1]
@ -81,8 +80,10 @@ class MotionDetector:
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
thresh_dilated = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cnts = imutils.grab_contours(cnts)
# loop over the contours
@ -100,6 +101,35 @@ class MotionDetector:
)
)
if self.save_images:
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
# print("--------")
# print(self.frame_counter)
for c in cnts:
contour_area = cv2.contourArea(c)
# print(contour_area)
if contour_area > self.config.contour_area:
x, y, w, h = cv2.boundingRect(c)
cv2.rectangle(
thresh_dilated,
(x, y),
(x + w, y + h),
(0, 0, 255),
2,
)
# print("--------")
image_row_1 = cv2.hconcat(
[
cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(avg_delta_image, cv2.COLOR_GRAY2BGR),
]
)
image_row_2 = cv2.hconcat(
[cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR), thresh_dilated]
)
combined_image = cv2.vconcat([image_row_1, image_row_2])
cv2.imwrite(f"motion/motion-{self.frame_counter}.jpg", combined_image)
if len(motion_boxes) > 0:
self.motion_frame_count += 1
if self.motion_frame_count >= 10: