mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
no longer make motion settings dynamic
This commit is contained in:
parent
e351e132f5
commit
294c79a271
@ -194,10 +194,14 @@ motion:
|
||||
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
|
||||
# The value should be between 1 and 255.
|
||||
threshold: 25
|
||||
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: ~0.17% of the motion frame area)
|
||||
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will make motion detection more sensitive to smaller
|
||||
# moving objects.
|
||||
contour_area: 100
|
||||
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: 30)
|
||||
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will
|
||||
# make motion detection more sensitive to smaller moving objects.
|
||||
# As a rule of thumb:
|
||||
# - 15 - high sensitivity
|
||||
# - 30 - medium sensitivity
|
||||
# - 50 - low sensitivity
|
||||
contour_area: 30
|
||||
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
|
||||
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
|
||||
# Too low and a fast moving person wont be detected as motion.
|
||||
@ -207,10 +211,10 @@ motion:
|
||||
# Low values will cause things like moving shadows to be detected as motion for longer.
|
||||
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
|
||||
frame_alpha: 0.2
|
||||
# Optional: Height of the resized motion frame (default: 1/6th of the original frame height, but no less than 180)
|
||||
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense of higher CPU usage.
|
||||
# Lower values result in less CPU, but small changes may not register as motion.
|
||||
frame_height: 180
|
||||
# Optional: Height of the resized motion frame (default: 80)
|
||||
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense
|
||||
# of higher CPU usage. Lower values result in less CPU, but small changes may not register as motion.
|
||||
frame_height: 50
|
||||
# Optional: motion mask
|
||||
# NOTE: see docs for more detailed info on creating masks
|
||||
mask: 0,900,1080,900,1080,1920,0,1920
|
||||
|
@ -103,10 +103,10 @@ class MotionConfig(FrigateBaseModel):
|
||||
ge=1,
|
||||
le=255,
|
||||
)
|
||||
contour_area: Optional[int] = Field(title="Contour Area")
|
||||
contour_area: Optional[int] = Field(default=30, title="Contour Area")
|
||||
delta_alpha: float = Field(default=0.2, title="Delta Alpha")
|
||||
frame_alpha: float = Field(default=0.2, title="Frame Alpha")
|
||||
frame_height: Optional[int] = Field(title="Frame Height")
|
||||
frame_height: Optional[int] = Field(default=50, title="Frame Height")
|
||||
mask: Union[str, List[str]] = Field(
|
||||
default="", title="Coordinates polygon for the motion mask."
|
||||
)
|
||||
@ -119,13 +119,6 @@ class RuntimeMotionConfig(MotionConfig):
|
||||
def __init__(self, **config):
|
||||
frame_shape = config.get("frame_shape", (1, 1))
|
||||
|
||||
if "frame_height" not in config:
|
||||
config["frame_height"] = frame_shape[0] // 6
|
||||
|
||||
if "contour_area" not in config:
|
||||
frame_width = frame_shape[1] * config["frame_height"] / frame_shape[0]
|
||||
config["contour_area"] = config["frame_height"] * frame_width * 0.004
|
||||
|
||||
mask = config.get("mask", "")
|
||||
config["raw_mask"] = mask
|
||||
|
||||
|
@ -23,6 +23,7 @@ class MotionDetector:
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
self.mask = np.where(resized_mask == [0])
|
||||
self.save_images = False
|
||||
|
||||
def detect(self, frame):
|
||||
motion_boxes = []
|
||||
@ -37,16 +38,13 @@ class MotionDetector:
|
||||
)
|
||||
|
||||
# Improve contrast
|
||||
minval = np.percentile(resized_frame, 5)
|
||||
maxval = np.percentile(resized_frame, 95)
|
||||
minval = np.percentile(resized_frame, 4)
|
||||
maxval = np.percentile(resized_frame, 96)
|
||||
resized_frame = np.clip(resized_frame, minval, maxval)
|
||||
resized_frame = (((resized_frame - minval) / (maxval - minval)) * 255).astype(
|
||||
np.uint8
|
||||
)
|
||||
|
||||
# convert to grayscale
|
||||
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# mask frame
|
||||
resized_frame[self.mask] = [255]
|
||||
|
||||
@ -55,6 +53,8 @@ class MotionDetector:
|
||||
if self.frame_counter < 30:
|
||||
self.frame_counter += 1
|
||||
else:
|
||||
if self.save_images:
|
||||
self.frame_counter += 1
|
||||
# compare to average
|
||||
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
|
||||
|
||||
@ -64,7 +64,6 @@ class MotionDetector:
|
||||
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
|
||||
|
||||
# compute the threshold image for the current frame
|
||||
# TODO: threshold
|
||||
current_thresh = cv2.threshold(
|
||||
frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY
|
||||
)[1]
|
||||
@ -81,8 +80,10 @@ class MotionDetector:
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
# on thresholded image
|
||||
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
thresh_dilated = cv2.dilate(thresh, None, iterations=2)
|
||||
cnts = cv2.findContours(
|
||||
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
# loop over the contours
|
||||
@ -100,6 +101,35 @@ class MotionDetector:
|
||||
)
|
||||
)
|
||||
|
||||
if self.save_images:
|
||||
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
|
||||
# print("--------")
|
||||
# print(self.frame_counter)
|
||||
for c in cnts:
|
||||
contour_area = cv2.contourArea(c)
|
||||
# print(contour_area)
|
||||
if contour_area > self.config.contour_area:
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
cv2.rectangle(
|
||||
thresh_dilated,
|
||||
(x, y),
|
||||
(x + w, y + h),
|
||||
(0, 0, 255),
|
||||
2,
|
||||
)
|
||||
# print("--------")
|
||||
image_row_1 = cv2.hconcat(
|
||||
[
|
||||
cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
|
||||
cv2.cvtColor(avg_delta_image, cv2.COLOR_GRAY2BGR),
|
||||
]
|
||||
)
|
||||
image_row_2 = cv2.hconcat(
|
||||
[cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR), thresh_dilated]
|
||||
)
|
||||
combined_image = cv2.vconcat([image_row_1, image_row_2])
|
||||
cv2.imwrite(f"motion/motion-{self.frame_counter}.jpg", combined_image)
|
||||
|
||||
if len(motion_boxes) > 0:
|
||||
self.motion_frame_count += 1
|
||||
if self.motion_frame_count >= 10:
|
||||
|
Loading…
Reference in New Issue
Block a user