mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-23 17:52:05 +02:00
Update Nvidia model stats to highlight which models support CUDA Graphs (#20141)
This commit is contained in:
parent
a7bbca5014
commit
2a860bd85e
@ -175,14 +175,17 @@ There are improved capabilities in newer GPU architectures that TensorRT can ben
|
|||||||
[NVIDIA GPU Compute Capability](https://developer.nvidia.com/cuda-gpus)
|
[NVIDIA GPU Compute Capability](https://developer.nvidia.com/cuda-gpus)
|
||||||
|
|
||||||
Inference speeds will vary greatly depending on the GPU and the model used.
|
Inference speeds will vary greatly depending on the GPU and the model used.
|
||||||
`tiny` variants are faster than the equivalent non-tiny model, some known examples are below:
|
`tiny (t)` variants are faster than the equivalent non-tiny model, some known examples are below:
|
||||||
|
|
||||||
| Name | YOLOv9 Inference Time | YOLO-NAS Inference Time | RF-DETR Inference Time |
|
✅ - Accelerated with CUDA Graphs
|
||||||
| --------------- | --------------------- | ------------------------- | ---------------------- |
|
❌ - Not accelerated with CUDA Graphs
|
||||||
| RTX 3050 | t-320: 15 ms | 320: ~ 10 ms 640: ~ 16 ms | Nano-320: ~ 12 ms |
|
|
||||||
| RTX 3070 | t-320: 11 ms | 320: ~ 8 ms 640: ~ 14 ms | Nano-320: ~ 9 ms |
|
| Name | ✅ YOLOv9 Inference Time | ✅ RF-DETR Inference Time | ❌ YOLO-NAS Inference Time
|
||||||
| RTX A4000 | | 320: ~ 15 ms | |
|
| --------------- | ------------------------ | ------------------------- | -------------------------- |
|
||||||
| Tesla P40 | | 320: ~ 105 ms | |
|
| RTX 3050 | t-320: 8 ms s-320: 10 ms | Nano-320: ~ 12 ms | 320: ~ 10 ms 640: ~ 16 ms |
|
||||||
|
| RTX 3070 | t-320: 6 ms s-320: 8 ms | Nano-320: ~ 9 ms | 320: ~ 8 ms 640: ~ 14 ms |
|
||||||
|
| RTX A4000 | | | 320: ~ 15 ms |
|
||||||
|
| Tesla P40 | | | 320: ~ 105 ms |
|
||||||
|
|
||||||
### Apple Silicon
|
### Apple Silicon
|
||||||
|
|
||||||
@ -204,8 +207,8 @@ Apple Silicon can not run within a container, so a ZMQ proxy is utilized to comm
|
|||||||
With the [ROCm](../configuration/object_detectors.md#amdrocm-gpu-detector) detector Frigate can take advantage of many discrete AMD GPUs.
|
With the [ROCm](../configuration/object_detectors.md#amdrocm-gpu-detector) detector Frigate can take advantage of many discrete AMD GPUs.
|
||||||
|
|
||||||
| Name | YOLOv9 Inference Time | YOLO-NAS Inference Time |
|
| Name | YOLOv9 Inference Time | YOLO-NAS Inference Time |
|
||||||
| --------- | --------------------- | ------------------------- |
|
| --------- | ------------------------- | ------------------------- |
|
||||||
| AMD 780M | ~ 14 ms | 320: ~ 25 ms 640: ~ 50 ms |
|
| AMD 780M | t-320: 14 ms s-320: 20 ms | 320: ~ 25 ms 640: ~ 50 ms |
|
||||||
|
|
||||||
## Community Supported Detectors
|
## Community Supported Detectors
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user