fix multiple object type tracking

This commit is contained in:
Blake Blackshear 2020-01-11 13:22:56 -06:00
parent d87f4407a0
commit 2aada930e3
3 changed files with 61 additions and 82 deletions

View File

@ -4,7 +4,9 @@ import threading
import cv2 import cv2
import prctl import prctl
import itertools import itertools
import copy
import numpy as np import numpy as np
import multiprocessing as mp
from collections import defaultdict from collections import defaultdict
from scipy.spatial import distance as dist from scipy.spatial import distance as dist
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
@ -24,6 +26,14 @@ class ObjectCleaner(threading.Thread):
for frame_time in list(self.camera.detected_objects.keys()).copy(): for frame_time in list(self.camera.detected_objects.keys()).copy():
if not frame_time in self.camera.frame_cache: if not frame_time in self.camera.frame_cache:
del self.camera.detected_objects[frame_time] del self.camera.detected_objects[frame_time]
with self.camera.object_tracker.tracked_objects_lock:
now = datetime.datetime.now().timestamp()
for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
# if the object is more than 10 seconds old
# and not in the most recent frame, deregister
if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
self.camera.object_tracker.deregister(id)
class DetectedObjectsProcessor(threading.Thread): class DetectedObjectsProcessor(threading.Thread):
def __init__(self, camera): def __init__(self, camera):
@ -222,15 +232,17 @@ class ObjectTracker(threading.Thread):
threading.Thread.__init__(self) threading.Thread.__init__(self)
self.camera = camera self.camera = camera
self.tracked_objects = {} self.tracked_objects = {}
self.disappeared = {} self.tracked_objects_lock = mp.Lock()
self.max_disappeared = max_disappeared self.most_recent_frame_time = None
def run(self): def run(self):
prctl.set_name(self.__class__.__name__) prctl.set_name(self.__class__.__name__)
while True: while True:
frame_time = self.camera.refined_frame_queue.get() frame_time = self.camera.refined_frame_queue.get()
self.match_and_update(self.camera.detected_objects[frame_time]) with self.tracked_objects_lock:
self.camera.frame_output_queue.put(frame_time) self.match_and_update(self.camera.detected_objects[frame_time])
self.most_recent_frame_time = frame_time
self.camera.frame_output_queue.put((frame_time, copy.deepcopy(self.tracked_objects)))
if len(self.tracked_objects) > 0: if len(self.tracked_objects) > 0:
with self.camera.objects_tracked: with self.camera.objects_tracked:
self.camera.objects_tracked.notify_all() self.camera.objects_tracked.notify_all()
@ -241,10 +253,8 @@ class ObjectTracker(threading.Thread):
obj['top_score'] = obj['score'] obj['top_score'] = obj['score']
self.add_history(obj) self.add_history(obj)
self.tracked_objects[id] = obj self.tracked_objects[id] = obj
self.disappeared[id] = 0
def deregister(self, id): def deregister(self, id):
del self.disappeared[id]
del self.tracked_objects[id] del self.tracked_objects[id]
def update(self, id, new_obj): def update(self, id, new_obj):
@ -267,22 +277,7 @@ class ObjectTracker(threading.Thread):
obj['history'] = [entry] obj['history'] = [entry]
def match_and_update(self, new_objects): def match_and_update(self, new_objects):
# check to see if the list of input bounding box rectangles
# is empty
if len(new_objects) == 0: if len(new_objects) == 0:
# loop over any existing tracked objects and mark them
# as disappeared
for objectID in list(self.disappeared.keys()):
self.disappeared[objectID] += 1
# if we have reached a maximum number of consecutive
# frames where a given object has been marked as
# missing, deregister it
if self.disappeared[objectID] > self.max_disappeared:
self.deregister(objectID)
# return early as there are no centroids or tracking info
# to update
return return
# group by name # group by name
@ -291,13 +286,12 @@ class ObjectTracker(threading.Thread):
new_object_groups[obj['name']].append(obj) new_object_groups[obj['name']].append(obj)
# track objects for each label type # track objects for each label type
# TODO: this is going to miss deregistering objects that are not in the new groups
for label, group in new_object_groups.items(): for label, group in new_object_groups.items():
current_objects = [o for o in self.tracked_objects.values() if o['name'] == label] current_objects = [o for o in self.tracked_objects.values() if o['name'] == label]
current_ids = [o['id'] for o in current_objects] current_ids = [o['id'] for o in current_objects]
current_centroids = np.array([o['centroid'] for o in current_objects]) current_centroids = np.array([o['centroid'] for o in current_objects])
# compute centroids # compute centroids of new objects
for obj in group: for obj in group:
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0) centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0) centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
@ -339,7 +333,6 @@ class ObjectTracker(threading.Thread):
for (row, col) in zip(rows, cols): for (row, col) in zip(rows, cols):
# if we have already examined either the row or # if we have already examined either the row or
# column value before, ignore it # column value before, ignore it
# val
if row in usedRows or col in usedCols: if row in usedRows or col in usedCols:
continue continue
@ -347,43 +340,22 @@ class ObjectTracker(threading.Thread):
# set its new centroid, and reset the disappeared # set its new centroid, and reset the disappeared
# counter # counter
objectID = current_ids[row] objectID = current_ids[row]
self.update(objectID, new_objects[col]) self.update(objectID, group[col])
self.disappeared[objectID] = 0
# indicate that we have examined each of the row and # indicate that we have examined each of the row and
# column indexes, respectively # column indexes, respectively
usedRows.add(row) usedRows.add(row)
usedCols.add(col) usedCols.add(col)
# compute both the row and column index we have NOT yet # compute the column index we have NOT yet examined
# examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols) unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# in the event that the number of object centroids is # if the number of input centroids is greater
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
if D.shape[0] >= D.shape[1]:
# loop over the unused row indexes
for row in unusedRows:
# grab the object ID for the corresponding row
# index and increment the disappeared counter
objectID = current_ids[row]
self.disappeared[objectID] += 1
# check to see if the number of consecutive
# frames the object has been marked "disappeared"
# for warrants deregistering the object
if self.disappeared[objectID] > self.max_disappeared:
self.deregister(objectID)
# otherwise, if the number of input centroids is greater
# than the number of existing object centroids we need to # than the number of existing object centroids we need to
# register each new input centroid as a trackable object # register each new input centroid as a trackable object
else: # if D.shape[0] < D.shape[1]:
for col in unusedCols: for col in unusedCols:
self.register(col, new_objects[col]) self.register(col, group[col])
# Maintains the frame and object with the highest score # Maintains the frame and object with the highest score
class BestFrames(threading.Thread): class BestFrames(threading.Thread):
@ -400,18 +372,18 @@ class BestFrames(threading.Thread):
with self.camera.objects_tracked: with self.camera.objects_tracked:
self.camera.objects_tracked.wait() self.camera.objects_tracked.wait()
# make a copy of detected objects # make a copy of tracked objects
detected_objects = list(self.camera.object_tracker.tracked_objects.values()).copy() tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
for obj in detected_objects: for obj in tracked_objects:
if obj['name'] in self.best_objects: if obj['name'] in self.best_objects:
now = datetime.datetime.now().timestamp() now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score # if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object # or the current object is more than 1 minute old, use the new object
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60: if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
self.best_objects[obj['name']] = obj self.best_objects[obj['name']] = copy.deepcopy(obj)
else: else:
self.best_objects[obj['name']] = obj self.best_objects[obj['name']] = copy.deepcopy(obj)
for name, obj in self.best_objects.items(): for name, obj in self.best_objects.items():
if obj['frame_time'] in self.camera.frame_cache: if obj['frame_time'] in self.camera.frame_cache:

View File

@ -75,12 +75,13 @@ def compute_intersection_over_union(box_a, box_b):
def tonumpyarray(mp_arr): def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8) return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info): def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None):
color = COLOR_MAP[label] if color is None:
color = COLOR_MAP[label]
display_text = "{}: {}".format(label, info) display_text = "{}: {}".format(label, info)
cv2.rectangle(frame, (x_min, y_min), cv2.rectangle(frame, (x_min, y_min),
(x_max, y_max), (x_max, y_max),
color, 2) color, thickness)
font_scale = 0.5 font_scale = 0.5
font = cv2.FONT_HERSHEY_SIMPLEX font = cv2.FONT_HERSHEY_SIMPLEX
# get the width and height of the text box # get the width and height of the text box

View File

@ -9,6 +9,7 @@ import multiprocessing as mp
import subprocess as sp import subprocess as sp
import numpy as np import numpy as np
import prctl import prctl
import copy
import itertools import itertools
from collections import defaultdict from collections import defaultdict
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
@ -64,7 +65,7 @@ class CameraWatchdog(threading.Thread):
# wait a bit before checking # wait a bit before checking
time.sleep(10) time.sleep(10)
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300: if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
print("last frame is more than 5 minutes old, restarting camera capture...") print("last frame is more than 5 minutes old, restarting camera capture...")
self.camera.start_or_restart_capture() self.camera.start_or_restart_capture()
time.sleep(5) time.sleep(5)
@ -116,12 +117,12 @@ class VideoWriter(threading.Thread):
def run(self): def run(self):
prctl.set_name(self.__class__.__name__) prctl.set_name(self.__class__.__name__)
while True: while True:
frame_time = self.camera.frame_output_queue.get() (frame_time, tracked_objects) = self.camera.frame_output_queue.get()
if len(self.camera.object_tracker.tracked_objects) == 0: # if len(self.camera.object_tracker.tracked_objects) == 0:
continue # continue
f = open(f"/debug/{self.camera.name}-{str(frame_time)}.jpg", 'wb') # f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
f.write(self.camera.frame_with_objects(frame_time)) # f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
f.close() # f.close()
class Camera: class Camera:
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix): def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
@ -195,6 +196,14 @@ class Camera:
for obj in objects_with_config: for obj in objects_with_config:
self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})} self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
# start a thread to track objects
self.object_tracker = ObjectTracker(self, 10)
self.object_tracker.start()
# start a thread to write tracked frames to disk
self.video_writer = VideoWriter(self)
self.video_writer.start()
# start a thread to queue resize requests for regions # start a thread to queue resize requests for regions
self.region_requester = RegionRequester(self) self.region_requester = RegionRequester(self)
self.region_requester.start() self.region_requester.start()
@ -222,14 +231,6 @@ class Camera:
self.region_refiner.start() self.region_refiner.start()
self.dynamic_region_fps.start() self.dynamic_region_fps.start()
# start a thread to track objects
self.object_tracker = ObjectTracker(self, 10)
self.object_tracker.start()
# start a thread to write tracked frames to disk
self.video_writer = VideoWriter(self)
self.video_writer.start()
# start a thread to publish object scores # start a thread to publish object scores
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self) mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
mqtt_publisher.start() mqtt_publisher.start()
@ -312,8 +313,9 @@ class Camera:
'dynamic_regions_per_sec': self.dynamic_region_fps.eps() 'dynamic_regions_per_sec': self.dynamic_region_fps.eps()
} }
def frame_with_objects(self, frame_time): def frame_with_objects(self, frame_time, tracked_objects=None):
frame = self.frame_cache[frame_time].copy() frame = self.frame_cache[frame_time].copy()
detected_objects = self.detected_objects[frame_time].copy()
for region in self.regions: for region in self.regions:
color = (255,255,255) color = (255,255,255)
@ -322,13 +324,17 @@ class Camera:
color, 2) color, 2)
# draw the bounding boxes on the screen # draw the bounding boxes on the screen
for id, obj in list(self.object_tracker.tracked_objects.items()):
# for obj in detected_objects[frame_time]: if tracked_objects is None:
cv2.rectangle(frame, (obj['region']['xmin'], obj['region']['ymin']), tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
(obj['region']['xmax'], obj['region']['ymax']),
(0,255,0), 1) for obj in detected_objects:
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {id}") draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']}", thickness=3)
for id, obj in tracked_objects.items():
color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {id}", color=color, thickness=1)
# print a timestamp # print a timestamp
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S") time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2) cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)