mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-19 19:06:16 +01:00
experimental: running ffmpeg directly and capturing raw frames
This commit is contained in:
parent
9f8278ea8f
commit
2b51dc3e5b
@ -52,7 +52,8 @@ RUN pip install -U pip \
|
||||
numpy \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML
|
||||
PyYAML \
|
||||
ffmpeg-python
|
||||
|
||||
# Download & build OpenCV
|
||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
||||
|
@ -90,12 +90,12 @@ class FramePrepper(threading.Thread):
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
# convert to RGB
|
||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||
#cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame_rgb.shape != (300, 300, 3):
|
||||
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
||||
frame_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
# add the frame to the queue
|
||||
if not self.prepped_frame_queue.full():
|
||||
|
@ -6,6 +6,7 @@ import threading
|
||||
import ctypes
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
import ffmpeg
|
||||
from . util import tonumpyarray
|
||||
from . object_detection import FramePrepper
|
||||
from . objects import ObjectCleaner, BestPersonFrame
|
||||
@ -16,48 +17,41 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
|
||||
# convert shared memory array into numpy and shape into image array
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
# start the video capture
|
||||
video = cv2.VideoCapture()
|
||||
video.open(rtsp_url)
|
||||
print("Opening the RTSP Url...")
|
||||
# keep the buffer small so we minimize old data
|
||||
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
||||
ffmpeg_process = (
|
||||
ffmpeg
|
||||
.input(rtsp_url,
|
||||
rtsp_transport="tcp",
|
||||
stimeout=5000000,
|
||||
use_wallclock_as_timestamps=1,
|
||||
fflags="+genpts",
|
||||
avoid_negative_ts="make_zero")
|
||||
.output('pipe:', format='rawvideo', pix_fmt='rgb24')
|
||||
)
|
||||
|
||||
print(ffmpeg_process.compile())
|
||||
|
||||
ffmpeg_process = ffmpeg_process.run_async(pipe_stdout=True)
|
||||
|
||||
bad_frame_counter = 0
|
||||
while True:
|
||||
# check if the video stream is still open, and reopen if needed
|
||||
if not video.isOpened():
|
||||
success = video.open(rtsp_url)
|
||||
if not success:
|
||||
time.sleep(1)
|
||||
continue
|
||||
# grab the frame, but dont decode it yet
|
||||
ret = video.grab()
|
||||
# snapshot the time the frame was grabbed
|
||||
frame_time = datetime.datetime.now()
|
||||
if ret:
|
||||
# go ahead and decode the current frame
|
||||
ret, frame = video.retrieve()
|
||||
if ret:
|
||||
# Lock access and update frame
|
||||
with frame_lock:
|
||||
arr[:] = frame
|
||||
shared_frame_time.value = frame_time.timestamp()
|
||||
# Notify with the condition that a new frame is ready
|
||||
with frame_ready:
|
||||
frame_ready.notify_all()
|
||||
bad_frame_counter = 0
|
||||
else:
|
||||
print("Unable to decode frame")
|
||||
bad_frame_counter += 1
|
||||
else:
|
||||
print("Unable to grab a frame")
|
||||
bad_frame_counter += 1
|
||||
|
||||
if bad_frame_counter > 100:
|
||||
video.release()
|
||||
|
||||
video.release()
|
||||
in_bytes = ffmpeg_process.stdout.read(frame_shape[0] * frame_shape[1] * frame_shape[2])
|
||||
if not in_bytes:
|
||||
print("No bytes received. Waiting 1 second before trying again.")
|
||||
time.sleep(1)
|
||||
continue
|
||||
frame = (
|
||||
np
|
||||
.frombuffer(in_bytes, np.uint8)
|
||||
.reshape(frame_shape)
|
||||
)
|
||||
# Lock access and update frame
|
||||
with frame_lock:
|
||||
shared_frame_time.value = datetime.datetime.now().timestamp()
|
||||
arr[:] = frame
|
||||
# Notify with the condition that a new frame is ready
|
||||
with frame_ready:
|
||||
frame_ready.notify_all()
|
||||
|
||||
ffmpeg_process.wait()
|
||||
|
||||
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
|
||||
class FrameTracker(threading.Thread):
|
||||
@ -279,7 +273,7 @@ class Camera:
|
||||
frame = self.shared_frame_np.copy()
|
||||
|
||||
# convert to RGB for drawing
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in detected_objects:
|
||||
color = (255,0,0)
|
||||
|
Loading…
Reference in New Issue
Block a user