experimental: running ffmpeg directly and capturing raw frames

This commit is contained in:
blakeblackshear 2019-05-27 12:41:52 -05:00 committed by Blake Blackshear
parent 9f8278ea8f
commit 2b51dc3e5b
3 changed files with 41 additions and 46 deletions

View File

@ -52,7 +52,8 @@ RUN pip install -U pip \
numpy \ numpy \
Flask \ Flask \
paho-mqtt \ paho-mqtt \
PyYAML PyYAML \
ffmpeg-python
# Download & build OpenCV # Download & build OpenCV
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip

View File

@ -90,12 +90,12 @@ class FramePrepper(threading.Thread):
frame_time = self.frame_time.value frame_time = self.frame_time.value
# convert to RGB # convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB) #cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# Resize to 300x300 if needed # Resize to 300x300 if needed
if cropped_frame_rgb.shape != (300, 300, 3): if cropped_frame.shape != (300, 300, 3):
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR) cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3] # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0) frame_expanded = np.expand_dims(cropped_frame, axis=0)
# add the frame to the queue # add the frame to the queue
if not self.prepped_frame_queue.full(): if not self.prepped_frame_queue.full():

View File

@ -6,6 +6,7 @@ import threading
import ctypes import ctypes
import multiprocessing as mp import multiprocessing as mp
import numpy as np import numpy as np
import ffmpeg
from . util import tonumpyarray from . util import tonumpyarray
from . object_detection import FramePrepper from . object_detection import FramePrepper
from . objects import ObjectCleaner, BestPersonFrame from . objects import ObjectCleaner, BestPersonFrame
@ -16,48 +17,41 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
# convert shared memory array into numpy and shape into image array # convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape) arr = tonumpyarray(shared_arr).reshape(frame_shape)
# start the video capture ffmpeg_process = (
video = cv2.VideoCapture() ffmpeg
video.open(rtsp_url) .input(rtsp_url,
print("Opening the RTSP Url...") rtsp_transport="tcp",
# keep the buffer small so we minimize old data stimeout=5000000,
video.set(cv2.CAP_PROP_BUFFERSIZE,1) use_wallclock_as_timestamps=1,
fflags="+genpts",
avoid_negative_ts="make_zero")
.output('pipe:', format='rawvideo', pix_fmt='rgb24')
)
print(ffmpeg_process.compile())
ffmpeg_process = ffmpeg_process.run_async(pipe_stdout=True)
bad_frame_counter = 0
while True: while True:
# check if the video stream is still open, and reopen if needed in_bytes = ffmpeg_process.stdout.read(frame_shape[0] * frame_shape[1] * frame_shape[2])
if not video.isOpened(): if not in_bytes:
success = video.open(rtsp_url) print("No bytes received. Waiting 1 second before trying again.")
if not success: time.sleep(1)
time.sleep(1) continue
continue frame = (
# grab the frame, but dont decode it yet np
ret = video.grab() .frombuffer(in_bytes, np.uint8)
# snapshot the time the frame was grabbed .reshape(frame_shape)
frame_time = datetime.datetime.now() )
if ret: # Lock access and update frame
# go ahead and decode the current frame with frame_lock:
ret, frame = video.retrieve() shared_frame_time.value = datetime.datetime.now().timestamp()
if ret: arr[:] = frame
# Lock access and update frame # Notify with the condition that a new frame is ready
with frame_lock: with frame_ready:
arr[:] = frame frame_ready.notify_all()
shared_frame_time.value = frame_time.timestamp()
# Notify with the condition that a new frame is ready
with frame_ready:
frame_ready.notify_all()
bad_frame_counter = 0
else:
print("Unable to decode frame")
bad_frame_counter += 1
else:
print("Unable to grab a frame")
bad_frame_counter += 1
if bad_frame_counter > 100: ffmpeg_process.wait()
video.release()
video.release()
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads # Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
class FrameTracker(threading.Thread): class FrameTracker(threading.Thread):
@ -279,7 +273,7 @@ class Camera:
frame = self.shared_frame_np.copy() frame = self.shared_frame_np.copy()
# convert to RGB for drawing # convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) #frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen # draw the bounding boxes on the screen
for obj in detected_objects: for obj in detected_objects:
color = (255,0,0) color = (255,0,0)