mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
experimental: running ffmpeg directly and capturing raw frames
This commit is contained in:
parent
9f8278ea8f
commit
2b51dc3e5b
@ -52,7 +52,8 @@ RUN pip install -U pip \
|
|||||||
numpy \
|
numpy \
|
||||||
Flask \
|
Flask \
|
||||||
paho-mqtt \
|
paho-mqtt \
|
||||||
PyYAML
|
PyYAML \
|
||||||
|
ffmpeg-python
|
||||||
|
|
||||||
# Download & build OpenCV
|
# Download & build OpenCV
|
||||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
||||||
|
@ -90,12 +90,12 @@ class FramePrepper(threading.Thread):
|
|||||||
frame_time = self.frame_time.value
|
frame_time = self.frame_time.value
|
||||||
|
|
||||||
# convert to RGB
|
# convert to RGB
|
||||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
#cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||||
# Resize to 300x300 if needed
|
# Resize to 300x300 if needed
|
||||||
if cropped_frame_rgb.shape != (300, 300, 3):
|
if cropped_frame.shape != (300, 300, 3):
|
||||||
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||||
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
frame_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||||
|
|
||||||
# add the frame to the queue
|
# add the frame to the queue
|
||||||
if not self.prepped_frame_queue.full():
|
if not self.prepped_frame_queue.full():
|
||||||
|
@ -6,6 +6,7 @@ import threading
|
|||||||
import ctypes
|
import ctypes
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import ffmpeg
|
||||||
from . util import tonumpyarray
|
from . util import tonumpyarray
|
||||||
from . object_detection import FramePrepper
|
from . object_detection import FramePrepper
|
||||||
from . objects import ObjectCleaner, BestPersonFrame
|
from . objects import ObjectCleaner, BestPersonFrame
|
||||||
@ -16,48 +17,41 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
|
|||||||
# convert shared memory array into numpy and shape into image array
|
# convert shared memory array into numpy and shape into image array
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
|
|
||||||
# start the video capture
|
ffmpeg_process = (
|
||||||
video = cv2.VideoCapture()
|
ffmpeg
|
||||||
video.open(rtsp_url)
|
.input(rtsp_url,
|
||||||
print("Opening the RTSP Url...")
|
rtsp_transport="tcp",
|
||||||
# keep the buffer small so we minimize old data
|
stimeout=5000000,
|
||||||
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
use_wallclock_as_timestamps=1,
|
||||||
|
fflags="+genpts",
|
||||||
|
avoid_negative_ts="make_zero")
|
||||||
|
.output('pipe:', format='rawvideo', pix_fmt='rgb24')
|
||||||
|
)
|
||||||
|
|
||||||
|
print(ffmpeg_process.compile())
|
||||||
|
|
||||||
|
ffmpeg_process = ffmpeg_process.run_async(pipe_stdout=True)
|
||||||
|
|
||||||
bad_frame_counter = 0
|
|
||||||
while True:
|
while True:
|
||||||
# check if the video stream is still open, and reopen if needed
|
in_bytes = ffmpeg_process.stdout.read(frame_shape[0] * frame_shape[1] * frame_shape[2])
|
||||||
if not video.isOpened():
|
if not in_bytes:
|
||||||
success = video.open(rtsp_url)
|
print("No bytes received. Waiting 1 second before trying again.")
|
||||||
if not success:
|
time.sleep(1)
|
||||||
time.sleep(1)
|
continue
|
||||||
continue
|
frame = (
|
||||||
# grab the frame, but dont decode it yet
|
np
|
||||||
ret = video.grab()
|
.frombuffer(in_bytes, np.uint8)
|
||||||
# snapshot the time the frame was grabbed
|
.reshape(frame_shape)
|
||||||
frame_time = datetime.datetime.now()
|
)
|
||||||
if ret:
|
# Lock access and update frame
|
||||||
# go ahead and decode the current frame
|
with frame_lock:
|
||||||
ret, frame = video.retrieve()
|
shared_frame_time.value = datetime.datetime.now().timestamp()
|
||||||
if ret:
|
arr[:] = frame
|
||||||
# Lock access and update frame
|
# Notify with the condition that a new frame is ready
|
||||||
with frame_lock:
|
with frame_ready:
|
||||||
arr[:] = frame
|
frame_ready.notify_all()
|
||||||
shared_frame_time.value = frame_time.timestamp()
|
|
||||||
# Notify with the condition that a new frame is ready
|
|
||||||
with frame_ready:
|
|
||||||
frame_ready.notify_all()
|
|
||||||
bad_frame_counter = 0
|
|
||||||
else:
|
|
||||||
print("Unable to decode frame")
|
|
||||||
bad_frame_counter += 1
|
|
||||||
else:
|
|
||||||
print("Unable to grab a frame")
|
|
||||||
bad_frame_counter += 1
|
|
||||||
|
|
||||||
if bad_frame_counter > 100:
|
ffmpeg_process.wait()
|
||||||
video.release()
|
|
||||||
|
|
||||||
video.release()
|
|
||||||
|
|
||||||
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
|
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
|
||||||
class FrameTracker(threading.Thread):
|
class FrameTracker(threading.Thread):
|
||||||
@ -279,7 +273,7 @@ class Camera:
|
|||||||
frame = self.shared_frame_np.copy()
|
frame = self.shared_frame_np.copy()
|
||||||
|
|
||||||
# convert to RGB for drawing
|
# convert to RGB for drawing
|
||||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||||
# draw the bounding boxes on the screen
|
# draw the bounding boxes on the screen
|
||||||
for obj in detected_objects:
|
for obj in detected_objects:
|
||||||
color = (255,0,0)
|
color = (255,0,0)
|
||||||
|
Loading…
Reference in New Issue
Block a user