mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
Validate faces using cosine distance and SVC
This commit is contained in:
parent
6e41fe6132
commit
2d4f5ecd6f
@ -69,7 +69,9 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
self.requires_face_detection = "face" not in self.config.objects.all_objects
|
||||
self.detected_faces: dict[str, float] = {}
|
||||
self.face_classifier = (
|
||||
FaceClassificationModel(db) if self.face_recognition_enabled else None
|
||||
FaceClassificationModel(self.config.face_recognition, db)
|
||||
if self.face_recognition_enabled
|
||||
else None
|
||||
)
|
||||
|
||||
# create communication for updating event descriptions
|
||||
@ -201,7 +203,9 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
# Create our own thumbnail based on the bounding box and the frame time
|
||||
try:
|
||||
yuv_frame = self.frame_manager.get(frame_name, camera_config.frame_shape_yuv)
|
||||
yuv_frame = self.frame_manager.get(
|
||||
frame_name, camera_config.frame_shape_yuv
|
||||
)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
@ -467,11 +471,9 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
f"Detected best face for person as: {sub_label} with score {score}"
|
||||
)
|
||||
|
||||
if score < self.config.face_recognition.threshold or (
|
||||
id in self.detected_faces and score <= self.detected_faces[id]
|
||||
):
|
||||
if id in self.detected_faces and score <= self.detected_faces[id]:
|
||||
logger.debug(
|
||||
f"Recognized face score {score} is less than threshold ({self.config.face_recognition.threshold}) / previous face score ({self.detected_faces.get(id)})."
|
||||
f"Recognized face score {score} is less than previous face score ({self.detected_faces.get(id)})."
|
||||
)
|
||||
return
|
||||
|
||||
|
@ -10,7 +10,8 @@ from playhouse.sqliteq import SqliteQueueDatabase
|
||||
from sklearn.preprocessing import LabelEncoder, Normalizer
|
||||
from sklearn.svm import SVC
|
||||
|
||||
from frigate.util.builtin import deserialize
|
||||
from frigate.config.semantic_search import FaceRecognitionConfig
|
||||
from frigate.util.builtin import deserialize, serialize
|
||||
|
||||
try:
|
||||
import openvino as ov
|
||||
@ -21,6 +22,9 @@ except ImportError:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
MIN_MATCHING_FACES = 2
|
||||
|
||||
|
||||
def get_ort_providers(
|
||||
force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False
|
||||
) -> tuple[list[str], list[dict[str, any]]]:
|
||||
@ -157,10 +161,19 @@ class ONNXModelRunner:
|
||||
|
||||
|
||||
class FaceClassificationModel:
|
||||
def __init__(self, db: SqliteQueueDatabase):
|
||||
def __init__(self, config: FaceRecognitionConfig, db: SqliteQueueDatabase):
|
||||
self.config = config
|
||||
self.db = db
|
||||
self.labeler: Optional[LabelEncoder] = None
|
||||
self.classifier: Optional[SVC] = None
|
||||
self.embedding_query = f"""
|
||||
SELECT
|
||||
id,
|
||||
distance
|
||||
FROM vec_faces
|
||||
WHERE face_embedding MATCH ?
|
||||
AND k = {MIN_MATCHING_FACES} ORDER BY distance
|
||||
"""
|
||||
|
||||
def __build_classifier(self) -> None:
|
||||
faces: list[tuple[str, bytes]] = self.db.execute_sql(
|
||||
@ -170,7 +183,9 @@ class FaceClassificationModel:
|
||||
self.labeler = LabelEncoder()
|
||||
norms = Normalizer(norm="l2").transform(embeddings)
|
||||
labels = self.labeler.fit_transform([f[0].split("-")[0] for f in faces])
|
||||
self.classifier = SVC(kernel="linear", probability=True)
|
||||
self.classifier = SVC(
|
||||
kernel="linear", probability=True, decision_function_shape="ovo"
|
||||
)
|
||||
self.classifier.fit(norms, labels)
|
||||
|
||||
def clear_classifier(self) -> None:
|
||||
@ -178,17 +193,50 @@ class FaceClassificationModel:
|
||||
self.labeler = None
|
||||
|
||||
def classify_face(self, embedding: np.ndarray) -> Optional[tuple[str, float]]:
|
||||
best_faces = self.db.execute_sql(
|
||||
self.embedding_query, [serialize(embedding)]
|
||||
).fetchall()
|
||||
logger.debug(f"Face embedding match: {best_faces}")
|
||||
|
||||
if not best_faces or len(best_faces) < MIN_MATCHING_FACES:
|
||||
logger.debug(
|
||||
f"{len(best_faces)} < {MIN_MATCHING_FACES} min required faces."
|
||||
)
|
||||
return None
|
||||
|
||||
sub_label = str(best_faces[0][0]).split("-")[0]
|
||||
avg_score = 0
|
||||
|
||||
# check that the cosine similarity is close enough to match the face
|
||||
for face in best_faces:
|
||||
score = 1.0 - face[1]
|
||||
|
||||
if face[0].split("-")[0] != sub_label:
|
||||
logger.debug("Detected multiple faces, result is not valid.")
|
||||
return None
|
||||
|
||||
avg_score += score
|
||||
|
||||
avg_score = round(avg_score / MIN_MATCHING_FACES, 2)
|
||||
|
||||
if avg_score < self.config.threshold:
|
||||
logger.debug(
|
||||
f"Recognized face score {avg_score} is less than threshold ({self.config.threshold}))."
|
||||
)
|
||||
return None
|
||||
|
||||
if not self.classifier:
|
||||
self.__build_classifier()
|
||||
|
||||
res = self.classifier.predict([embedding])
|
||||
cosine_index = self.labeler.transform([sub_label])[0]
|
||||
probabilities: list[float] = self.classifier.predict_proba([embedding])[0]
|
||||
svc_probability = max(probabilities)
|
||||
logger.debug(f"SVC face classification probability: {svc_probability} and index match: {cosine_index} / {probabilities.index(svc_probability)}")
|
||||
|
||||
if res is None:
|
||||
return None
|
||||
if cosine_index == probabilities.index(svc_probability):
|
||||
return (
|
||||
sub_label,
|
||||
min(avg_score, svc_probability),
|
||||
)
|
||||
|
||||
label = res[0]
|
||||
probabilities = self.classifier.predict_proba([embedding])[0]
|
||||
return (
|
||||
self.labeler.inverse_transform([label])[0],
|
||||
round(probabilities[label], 2),
|
||||
)
|
||||
return None
|
||||
|
Loading…
Reference in New Issue
Block a user