Validate faces using cosine distance and SVC

This commit is contained in:
Nicolas Mowen 2024-11-19 11:03:47 -07:00
parent 6e41fe6132
commit 2d4f5ecd6f
2 changed files with 68 additions and 18 deletions

View File

@ -69,7 +69,9 @@ class EmbeddingMaintainer(threading.Thread):
self.requires_face_detection = "face" not in self.config.objects.all_objects self.requires_face_detection = "face" not in self.config.objects.all_objects
self.detected_faces: dict[str, float] = {} self.detected_faces: dict[str, float] = {}
self.face_classifier = ( self.face_classifier = (
FaceClassificationModel(db) if self.face_recognition_enabled else None FaceClassificationModel(self.config.face_recognition, db)
if self.face_recognition_enabled
else None
) )
# create communication for updating event descriptions # create communication for updating event descriptions
@ -201,7 +203,9 @@ class EmbeddingMaintainer(threading.Thread):
# Create our own thumbnail based on the bounding box and the frame time # Create our own thumbnail based on the bounding box and the frame time
try: try:
yuv_frame = self.frame_manager.get(frame_name, camera_config.frame_shape_yuv) yuv_frame = self.frame_manager.get(
frame_name, camera_config.frame_shape_yuv
)
except FileNotFoundError: except FileNotFoundError:
pass pass
@ -467,11 +471,9 @@ class EmbeddingMaintainer(threading.Thread):
f"Detected best face for person as: {sub_label} with score {score}" f"Detected best face for person as: {sub_label} with score {score}"
) )
if score < self.config.face_recognition.threshold or ( if id in self.detected_faces and score <= self.detected_faces[id]:
id in self.detected_faces and score <= self.detected_faces[id]
):
logger.debug( logger.debug(
f"Recognized face score {score} is less than threshold ({self.config.face_recognition.threshold}) / previous face score ({self.detected_faces.get(id)})." f"Recognized face score {score} is less than previous face score ({self.detected_faces.get(id)})."
) )
return return

View File

@ -10,7 +10,8 @@ from playhouse.sqliteq import SqliteQueueDatabase
from sklearn.preprocessing import LabelEncoder, Normalizer from sklearn.preprocessing import LabelEncoder, Normalizer
from sklearn.svm import SVC from sklearn.svm import SVC
from frigate.util.builtin import deserialize from frigate.config.semantic_search import FaceRecognitionConfig
from frigate.util.builtin import deserialize, serialize
try: try:
import openvino as ov import openvino as ov
@ -21,6 +22,9 @@ except ImportError:
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
MIN_MATCHING_FACES = 2
def get_ort_providers( def get_ort_providers(
force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False
) -> tuple[list[str], list[dict[str, any]]]: ) -> tuple[list[str], list[dict[str, any]]]:
@ -157,10 +161,19 @@ class ONNXModelRunner:
class FaceClassificationModel: class FaceClassificationModel:
def __init__(self, db: SqliteQueueDatabase): def __init__(self, config: FaceRecognitionConfig, db: SqliteQueueDatabase):
self.config = config
self.db = db self.db = db
self.labeler: Optional[LabelEncoder] = None self.labeler: Optional[LabelEncoder] = None
self.classifier: Optional[SVC] = None self.classifier: Optional[SVC] = None
self.embedding_query = f"""
SELECT
id,
distance
FROM vec_faces
WHERE face_embedding MATCH ?
AND k = {MIN_MATCHING_FACES} ORDER BY distance
"""
def __build_classifier(self) -> None: def __build_classifier(self) -> None:
faces: list[tuple[str, bytes]] = self.db.execute_sql( faces: list[tuple[str, bytes]] = self.db.execute_sql(
@ -170,7 +183,9 @@ class FaceClassificationModel:
self.labeler = LabelEncoder() self.labeler = LabelEncoder()
norms = Normalizer(norm="l2").transform(embeddings) norms = Normalizer(norm="l2").transform(embeddings)
labels = self.labeler.fit_transform([f[0].split("-")[0] for f in faces]) labels = self.labeler.fit_transform([f[0].split("-")[0] for f in faces])
self.classifier = SVC(kernel="linear", probability=True) self.classifier = SVC(
kernel="linear", probability=True, decision_function_shape="ovo"
)
self.classifier.fit(norms, labels) self.classifier.fit(norms, labels)
def clear_classifier(self) -> None: def clear_classifier(self) -> None:
@ -178,17 +193,50 @@ class FaceClassificationModel:
self.labeler = None self.labeler = None
def classify_face(self, embedding: np.ndarray) -> Optional[tuple[str, float]]: def classify_face(self, embedding: np.ndarray) -> Optional[tuple[str, float]]:
best_faces = self.db.execute_sql(
self.embedding_query, [serialize(embedding)]
).fetchall()
logger.debug(f"Face embedding match: {best_faces}")
if not best_faces or len(best_faces) < MIN_MATCHING_FACES:
logger.debug(
f"{len(best_faces)} < {MIN_MATCHING_FACES} min required faces."
)
return None
sub_label = str(best_faces[0][0]).split("-")[0]
avg_score = 0
# check that the cosine similarity is close enough to match the face
for face in best_faces:
score = 1.0 - face[1]
if face[0].split("-")[0] != sub_label:
logger.debug("Detected multiple faces, result is not valid.")
return None
avg_score += score
avg_score = round(avg_score / MIN_MATCHING_FACES, 2)
if avg_score < self.config.threshold:
logger.debug(
f"Recognized face score {avg_score} is less than threshold ({self.config.threshold}))."
)
return None
if not self.classifier: if not self.classifier:
self.__build_classifier() self.__build_classifier()
res = self.classifier.predict([embedding]) cosine_index = self.labeler.transform([sub_label])[0]
probabilities: list[float] = self.classifier.predict_proba([embedding])[0]
svc_probability = max(probabilities)
logger.debug(f"SVC face classification probability: {svc_probability} and index match: {cosine_index} / {probabilities.index(svc_probability)}")
if res is None: if cosine_index == probabilities.index(svc_probability):
return None
label = res[0]
probabilities = self.classifier.predict_proba([embedding])[0]
return ( return (
self.labeler.inverse_transform([label])[0], sub_label,
round(probabilities[label], 2), min(avg_score, svc_probability),
) )
return None