diff --git a/frigate/object_processing.py b/frigate/object_processing.py index 27b59a94f..06d704f10 100644 --- a/frigate/object_processing.py +++ b/frigate/object_processing.py @@ -34,7 +34,9 @@ class TrackedObjectProcessor(threading.Thread): 'best_objects': {}, 'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')), 'tracked_objects': {}, - 'current_frame_time': None + 'current_frame_time': None, + 'current_frame': np.zeros((720,1280,3), np.uint8), + 'object_id': None }) def get_best(self, camera, label): @@ -64,33 +66,40 @@ class TrackedObjectProcessor(threading.Thread): object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}")) object_id_bytes = object_id_hash.digest() object_id = plasma.ObjectID(object_id_bytes) - current_frame = self.plasma_client.get(object_id) - - # draw the bounding boxes on the frame - for obj in tracked_objects.values(): - thickness = 2 - color = COLOR_MAP[obj['label']] - - if obj['frame_time'] != frame_time: - thickness = 1 - color = (255,0,0) + current_frame = self.plasma_client.get(object_id, timeout_ms=0) + if not current_frame is plasma.ObjectNotAvailable: # draw the bounding boxes on the frame - box = obj['box'] - draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color) - # draw the regions on the frame - region = obj['region'] - cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1) - - if config['snapshots']['show_timestamp']: - time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S") - cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2) + for obj in tracked_objects.values(): + thickness = 2 + color = COLOR_MAP[obj['label']] + + if obj['frame_time'] != frame_time: + thickness = 1 + color = (255,0,0) - ### - # Set the current frame as ready - ### - self.camera_data[camera]['current_frame'] = current_frame - self.camera_data[camera]['current_frame_time'] = frame_time + # draw the bounding boxes on the frame + box = obj['box'] + draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color) + # draw the regions on the frame + region = obj['region'] + cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1) + + if config['snapshots']['show_timestamp']: + time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S") + cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2) + + ### + # Set the current frame as ready + ### + self.camera_data[camera]['current_frame'] = current_frame + self.camera_data[camera]['current_frame_time'] = frame_time + + # store the object id, so you can delete it at the next loop + previous_object_id = self.camera_data[camera]['object_id'] + if not previous_object_id is None: + self.plasma_client.delete([previous_object_id]) + self.camera_data[camera]['object_id'] = object_id ### # Maintain the highest scoring recent object and frame for each label @@ -104,10 +113,10 @@ class TrackedObjectProcessor(threading.Thread): # if the object is a higher score than the current best score # or the current object is more than 1 minute old, use the new object if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60: - obj['frame'] = np.copy(current_frame) + obj['frame'] = np.copy(self.camera_data[camera]['current_frame']) best_objects[obj['label']] = obj else: - obj['frame'] = np.copy(current_frame) + obj['frame'] = np.copy(self.camera_data[camera]['current_frame']) best_objects[obj['label']] = obj ###