Revamp object consolidation logic (#8289)

* Separate object reduction to own function and reduce confidence of boxes on edge of region

* Add tests for different scenarios

* Formatting
This commit is contained in:
Nicolas Mowen 2023-10-23 18:20:21 -06:00 committed by GitHub
parent e9376ca285
commit 2fb7200fb7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 190 additions and 81 deletions

View File

@ -11,6 +11,7 @@ from frigate.util.object import (
get_cluster_candidates,
get_cluster_region,
get_region_from_grid,
reduce_detections,
)
@ -192,6 +193,95 @@ class TestObjectBoundingBoxes(unittest.TestCase):
assert intersection(box_a, box_b) == None
assert intersection(box_b, box_c) == (899, 128, 985, 151)
def test_overlapping_objects_reduced(self):
"""Test that object not on edge of region is used when a higher scoring object at the edge of region is provided."""
detections = [
(
"car",
0.81,
(1209, 73, 1437, 163),
20520,
2.53333333,
(1150, 0, 1500, 200),
),
(
"car",
0.88,
(1238, 73, 1401, 171),
15974,
1.663265306122449,
(1242, 0, 1602, 360),
),
]
frame_shape = (720, 2560)
consolidated_detections = reduce_detections(frame_shape, detections)
assert consolidated_detections == [
(
"car",
0.81,
(1209, 73, 1437, 163),
20520,
2.53333333,
(1150, 0, 1500, 200),
)
]
def test_non_overlapping_objects_not_reduced(self):
"""Test that non overlapping objects are not reduced."""
detections = [
(
"car",
0.81,
(1209, 73, 1437, 163),
20520,
2.53333333,
(1150, 0, 1500, 200),
),
(
"car",
0.83203125,
(1121, 55, 1214, 100),
4185,
2.066666666666667,
(922, 0, 1242, 320),
),
(
"car",
0.85546875,
(1414, 97, 1571, 186),
13973,
1.7640449438202248,
(1248, 0, 1568, 320),
),
]
frame_shape = (720, 2560)
consolidated_detections = reduce_detections(frame_shape, detections)
assert len(consolidated_detections) == len(detections)
def test_overlapping_different_size_objects_not_reduced(self):
"""Test that overlapping objects that are significantly different in size are not reduced."""
detections = [
(
"car",
0.81,
(164, 279, 816, 719),
286880,
1.48,
(90, 0, 910, 820),
),
(
"car",
0.83203125,
(248, 340, 328, 385),
3600,
1.777,
(0, 0, 460, 460),
),
]
frame_shape = (720, 2560)
consolidated_detections = reduce_detections(frame_shape, detections)
assert len(consolidated_detections) == len(detections)
class TestRegionGrid(unittest.TestCase):
def setUp(self) -> None:

View File

@ -3,6 +3,7 @@
import datetime
import logging
import math
from collections import defaultdict
import cv2
import numpy as np
@ -15,6 +16,7 @@ from frigate.models import Event, Regions, Timeline
from frigate.util.image import (
area,
calculate_region,
clipped,
intersection,
intersection_over_union,
yuv_region_2_bgr,
@ -414,43 +416,6 @@ def get_cluster_region(frame_shape, min_region, cluster, boxes):
)
def get_consolidated_object_detections(detected_object_groups):
"""Drop detections that overlap too much"""
consolidated_detections = []
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx]
current_label = current_detection[0]
current_box = current_detection[2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
intersect_box = intersection(current_box, to_check)
# if 90% of smaller detection is inside of another detection, consolidate
if intersect_box is not None and area(intersect_box) / area(
current_box
) > LABEL_CONSOLIDATION_MAP.get(
current_label, LABEL_CONSOLIDATION_DEFAULT
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(sorted_by_area[current_detection_idx])
return consolidated_detections
def get_startup_regions(
frame_shape: tuple[int],
region_min_size: int,
@ -483,3 +448,99 @@ def get_startup_regions(
)
return regions
def reduce_detections(
frame_shape: tuple[int],
all_detections: list[tuple[any]],
) -> list[tuple[any]]:
"""Take a list of detections and reduce overlaps to create a list of confident detections."""
def reduce_overlapping_detections(detections: list[tuple[any]]) -> list[tuple[any]]:
"""apply non-maxima suppression to suppress weak, overlapping bounding boxes."""
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
# reduce confidences for objects that are on edge of region
# 0.6 should be used to ensure that the object is still considered and not dropped
# due to min score requirement of NMSBoxes
confidences = [0.6 if clipped(o, frame_shape) else o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# add objects
for index in idxs:
index = index if isinstance(index, np.int32) else index[0]
obj = group[index]
selected_objects.append(obj)
# set the detections list to only include top objects
return selected_objects
def get_consolidated_object_detections(detections: list[tuple[any]]):
"""Drop detections that overlap too much."""
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
consolidated_detections = []
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx]
current_label = current_detection[0]
current_box = current_detection[2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
# if area of current detection / area of check < 5% they should not be compared
# this covers cases where a large car parked in a driveway doesn't block detections
# of cars in the street behind it
if area(current_box) / area(to_check) < 0.05:
continue
intersect_box = intersection(current_box, to_check)
# if % of smaller detection is inside of another detection, consolidate
if intersect_box is not None and area(intersect_box) / area(
current_box
) > LABEL_CONSOLIDATION_MAP.get(
current_label, LABEL_CONSOLIDATION_DEFAULT
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(
sorted_by_area[current_detection_idx]
)
return consolidated_detections
return get_consolidated_object_detections(
reduce_overlapping_detections(all_detections)
)

View File

@ -7,10 +7,8 @@ import signal
import subprocess as sp
import threading
import time
from collections import defaultdict
import cv2
import numpy as np
from setproctitle import setproctitle
from frigate.config import CameraConfig, DetectConfig, ModelConfig
@ -39,12 +37,12 @@ from frigate.util.object import (
get_cluster_candidates,
get_cluster_region,
get_cluster_region_from_grid,
get_consolidated_object_detections,
get_min_region_size,
get_startup_regions,
inside_any,
intersects_any,
is_object_filtered,
reduce_detections,
)
from frigate.util.services import listen
@ -688,50 +686,10 @@ def process_frames(
)
)
#########
# merge objects
#########
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
# o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# add objects
for index in idxs:
index = index if isinstance(index, np.int32) else index[0]
obj = group[index]
selected_objects.append(obj)
# set the detections list to only include top objects
detections = selected_objects
consolidated_detections = reduce_detections(frame_shape, detections)
# if detection was run on this frame, consolidate
if len(regions) > 0:
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
consolidated_detections = get_consolidated_object_detections(
detected_object_groups
)
tracked_detections = [
d
for d in consolidated_detections