readme updates

This commit is contained in:
Blake Blackshear 2020-03-01 07:47:22 -06:00
parent e7c536ea31
commit 2fbba01577

View File

@ -16,16 +16,6 @@ You see multiple bounding boxes because it draws bounding boxes from all frames
[![](http://img.youtube.com/vi/nqHbCtyo4dY/0.jpg)](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
## Getting Started
Build the container with
```
docker build -t frigate .
```
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
Run the container with
```bash
docker run --rm \
@ -36,7 +26,7 @@ docker run --rm \
-v /etc/localtime:/etc/localtime:ro \
-p 5000:5000 \
-e FRIGATE_RTSP_PASSWORD='password' \
frigate:latest
blakeblackshear/frigate:stable
```
Example docker-compose:
@ -46,7 +36,7 @@ Example docker-compose:
restart: unless-stopped
privileged: true
shm_size: '1g' # should work for 5-7 cameras
image: frigate:latest
image: blakeblackshear/frigate:stable
volumes:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
@ -127,6 +117,11 @@ sensor:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
unit_of_measurement: 'ms'
```
## Using a custom model
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
## Tips
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed