diff --git a/frigate/process_clip.py b/frigate/process_clip.py index e188c7339..c81d65828 100644 --- a/frigate/process_clip.py +++ b/frigate/process_clip.py @@ -98,7 +98,7 @@ class ProcessClip(): self.detected_objects_queue, process_info, objects_to_track, object_filters, mask, stop_event, exit_on_empty=True) - def objects_found(self, debug_path=None): + def top_object(self, debug_path=None): obj_detected = False top_computed_score = 0.0 def handle_event(name, obj, frame_time): @@ -117,9 +117,9 @@ class ProcessClip(): self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values()) self.camera_state.update(frame_time, current_tracked_objects) - for obj in self.camera_state.tracked_objects.values(): - obj_data = obj.to_dict() - print(f"{frame_time}: {obj_data['id']} - {obj_data['label']} - {obj_data['score']} - {obj.score_history}") + # for obj in self.camera_state.tracked_objects.values(): + # obj_data = obj.to_dict() + # print(f"{frame_time}: {obj_data['id']} - {obj_data['label']} - {obj_data['score']} - {obj.score_history}") self.frame_manager.delete(self.camera_state.previous_frame_id) @@ -154,8 +154,9 @@ class ProcessClip(): @click.option("-p", "--path", required=True, help="Path to clip or directory to test.") @click.option("-l", "--label", default='person', help="Label name to detect.") @click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.") +@click.option("-s", "--scores", default=None, help="File to save csv of top scores") @click.option("--debug-path", default=None, help="Path to output frames for debugging.") -def process(path, label, threshold, debug_path): +def process(path, label, threshold, scores, debug_path): clips = [] if os.path.isdir(path): files = os.listdir(path) @@ -196,10 +197,12 @@ def process(path, label, threshold, debug_path): process_clip.load_frames() process_clip.process_frames(objects_to_track=[label]) - results.append((c, process_clip.objects_found(debug_path))) + results.append((c, process_clip.top_object(debug_path))) - for result in results: - print(f"{result[0]}: {result[1]}") + if not scores is None: + with open(scores, 'w') as writer: + for result in results: + writer.write(f"{result[0]},{result[1]['top_score']}\n") positive_count = sum(1 for result in results if result[1]['object_detected']) print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")